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1.1

(l. Building energy performance assessment

Why assessing the energy performance

It is commonly known that the share of new buildings in the overall construction sector is very
low. Most buildings are several decades old and often have poor energy performance, especially
compared to recent standards for new constructions. The largest potential for energy savings in the
building sector therefore lies in the renovation of the existing building stock. This was one of the
motivations behind the second axis of the 6! societal challenge of the ANR call for projects: “du
batiment au cadre de vie durable” (towards a sustainable built environment).

The renovation process of individual or collective buildings is generally solely based on their
initial yearly energy consumption, and standard solutions are applied without any guarantee of
performance. A condition for a cost-effective refurbishment, adapted to each specific building,
is to perform detailed diagnostics of its performance prior to picking solutions: for instance, to
estimate which proportion of the heat losses are caused by air leakage, by the envelope, or by a
dysfunction of the heating systems. The first option to achieve such a detailed audit is to use an
excessive amount of sensors, surveys and in-situ measurements, followed by lengthy interpretation
of results in order to point the weaknesses of the building regarding energy efficiency. The second
option is to implement inverse techniques, which are able to automatically learn from the data in
order to construct a realistic representation of the characteristics of a building. The centre of the
BAYREB project is the application of Bayesian inference as an inverse method for the energy audit
of existing buildings.

R) In this document, the term of diagnestics essentially denotes the Energy Performance
Diagnostics (DPE), which is an estimation of consumption and heat loss based on a regulatory
calculation. The term of characterisation is then used to depict an estimation based on
in-situ measurements, through model calibration. The term performance assessment here
encompasses these two concepts of diagnosis and characterization. This section first describes
the practice of diagnosis in France with a brief presentation of the DPE. Then, Sec. 1.2 deals
with the research work that began in the 1980s and continues today to propose the energy
characterisation of the building on the basis of static measurements (energy signature and
co-heating methods) or dynamic measurements (QUB and ISABELE methods).
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The European Energy Performance of Buildings Directive (EPBD) of 2002 introduced the first
common methodology for calculating the integrated energy performance of buildings. In France,
this led to the introduction of the Energy Performance Diagnosis (DPE), which has been mandatory
since November 1, 2006 for all sales or rentals of new or existing properties.

The DPE describes the building or dwelling (surface area, orientation, walls, windows, materials,
etc.), as well as its heating, domestic hot water production, cooling and ventilation equipment.
It indicates, depending on the case, either the energy actually consumed (based on invoices, for
individual dwellings built before 1948, collective and offices), or the estimated energy consumption
for a standardised use of the building (3CL calculation method for individual dwellings built after
1948).
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Figure 1.1: Regulatory environmental labels: energy label and climate label

One of the main elements of the DPE is the display of energy and climate labels, indicating
the positioning of the dwelling with regard to its primary energy consumption and greenhouse gas
emissions. It results in recommendations for energy improvements addressed to the owner, with
estimations of the energy savings they represent and their payback time.

In theory, a rigorous and complete 3CL calculation establishes a detailed description of the
consumption and losses of the dwelling: U-value of the glazed and opaque walls, losses due
to thermal bridges and air change, environmental factors, inertia, intermittency factor, heating
consumption, as well as the efficiency of distribution, emission, regulation and generation of
heating, DHW and cooling.

The DPE as it is currently carried out in France has, however, limitations that justify the
numerous research works on characterization, listed below.

* Even in its most detailed version, this calculation is purely theoretical and is based exclusively
on the appraiser’s knowledge of the building. However, buildings in need of rehabilitation
are often the ones with the most unknowns due to ageing. A deterioration of the envelope
can, for example, influence the U-value of the walls without being taken into account.

* The calculation does not take into account the actual behaviour of the occupants but assumes
that of a typical family to evaluate the intrinsic performance of the building.

* This is not a dynamic thermal simulation in which the effects of inertia and solar gains would
be precisely taken into account. Passive houses designed to rely on very little heating can
therefore see their consumption largely overestimated compared to reality.

» Each element of the calculation is based on empirical coefficients derived from the properties
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of typical components. For example, no measurements are taken to assess heat loss through
air exchange due to the permeability of the envelope. These are evaluated on a purely
theoretical basis.

The result of these approximations is that DPE only gives a vague idea of the theoretical
performance of a building, without aiming at its actual performance. The recommendations it
makes cannot be considered as specifically tailored to a particular building. In order to overcome
these shortcomings, characterization methods were developed that aim to obtain a more or less
detailed description of the actual performance of the building, based on measurements carried out
in situ and a specified experimental protocol.

Assessing the performance with in-situ measurements

A great deal of work has been carried out since the 1980s aimed at estimating the actual performance
of buildings on the basis of in situ measurements [Sub+88]. The objective of such an estimation can
be, for example, to compare these real performances with those targeted at the time of design, to
establish a predictive model of a building integrating its systems [BM11], or to establish a diagnosis
prior to rehabilitation.

Several French ANR projects may be mentioned in relation to the topic of energy diagnostics
and reliability of predictions. The ANR MEMOIRE! project has applied inverse methods as a
means to identify intrinsic characteristics of a building. However, one of the difficulties identified
in its outcome is the fact that scientific challenges remain to be raised before solutions could be
submitted to professionals. The transition to the operational side demanded further investigations
that had not yet been implemented. The ANR FIABILITE? project focused on the reliability of
building simulation models and the impact of errors on their results. This is a key issue in the
resolution of inverse problems, due the high sensitivity of their solutions to inaccurate hypotheses.
Though the FIABILITE project was not aimed at diagnostics, its findings are thus very relevant to
the elaboration of a rigorous methodology for the energy audit. Later, the ANR COMIS? project
evaluated the real efficiency of innovative systems and their integration in buildings.

These projects show the relevance of a careful consideration of measurement data and simulation
procedures in obtaining a reliable characterisation of the performance of equipment or of the
envelope. Internationally, these concerns are addressed by several projects. Within the IEA EBC
Annexes 58 and 71, full scale dynamic measurements and advanced statistical methods are used
in order to come to a reliable performance characterisation. Within the PERFORMER European
project*, methodologies were shown to assess thermal characteristics of a building: the ISABELE
method (in situ assessment of the building envelope performance) by the CSTB and the QUB
method (quick U-value of buildings) by Saint-Gobain.

A knowledge sharing effort was carried out within the IEA EBC 58 Annex, a project supported
by the International Energy Agency’s Energy in Buildings and Communities programme (IEA
EBC), whose title was Reliable Building Energy Performance Characterisation Based on Full
Scale Dynamic Measurement. Among other results, the project resulted on the one hand in an
inventory of existing full-scale experimental test facilities [Jan16a] and recommendations for the
implementation of an optimised measurement protocol [Jim16]; on the other hand in an inventory of

! ANR MEMOIRE : Mesure Enrichie par la Modélisation pour une conception Intelligente en Rénovation Energétique.
Programme ANR HABISOL, édition 2010

2ANR FIABILITE : Fiabilité des prévisions des performances énergétiques des batiments. Programme ANR
HABISOL, édition 2010

3 ANR COMIS : Evaluation des systémes innovants intégrés a des batiments performants. Appel  projets générique
2014

4PERFORMER: Portable, Exhaustive, Reliable, Flexible and Optimized approach to Monitoring and Evaluation of
building energy performance. 7 th Framework Programme (FP7) http://performer-project.eu
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existing data analysis methods [Jan16b] and guidelines for their statistical interpretation [Mad16].

Annex 58 has led to an important structuring of research at the global level on the subject of
characterization from dynamic measurements. However, the work carried out in this area has had
its limitations due to its experimental nature: the tests were carried out under laboratory conditions
in unoccupied test cells. However, the behaviour of the users of a building is an important factor in
its performance. For this reason, the Annex 58 project was then continued in the form of Annex 71
(Building Energy Performance Assessment Based on In-situ Measurements) with a special focus on
buildings observed in their actual conditions of use.

Méthodes statiques Méthodes dynamiques
Information faible Information importante
Méthodes sans occupation
o . QUB
Instrumentation intrusive Co-heating
ISABELE

Méthodes avec occupation ) , L.
Signature énergeétique

Instrumentation non intrusive A o, « Calibrage Bayésien »
Régression linéaire

Figure 1.2: Classification of methods

The methods for building performance assessment by in-situ measurements are hereby classified
into two categories shown by Fig. 1.2:

* Methods feasible only in unoccupied premises, in which extensive instrumentation may be
deployed for imposing heating loads and recording the building’s behaviour.

* Methods that can be implemented in occupied buildings, using non-intrusive measurements.
This category of methods is essentially represented in the literature by the principle of the
energy signature, which compensates for the uncertainties linked to the occupation by a long
measurement time, resulting in a very macroscopic and uninformative description of the
performance.

Among these two categories, we also distinguish between so-called static methods and dynamic
methods. The first are based on an energy balance of the building averaged over a sufficiently long
period (from several weeks to several months) so that data may be aggregated in a sampling time
where each point is a steady state of the building. The second category uses dynamic models of the
observed thermal behaviour of the building, and allows much shorter measurement periods.

The trend today is to use dynamic measurements [Jan16b], backed by grey box models [BM11]
to identify an increasing number of parameters of the building. This research paves the way for
an informed selection of renovation scenarios in case of characterization of an older building. On
the other hand, the intrusiveness of these methods poses a problem with regard to the objective
of characterizing occupied building. Since the behaviour of the occupants represents is a very
influential unknown factor, it is generally overcome by considering only periods without occupancy
of the building, and therefore preferably short periods. A new method, analysing measurements
taken in occupied sites, should avoid any intrusiveness of the instrumentation. This is the objective
of the BAYREB project, and this specification has also been identified as the motivation for IEA
EBC 71 as a continuation of Annex 58.

The following sections show an overview of the main characterisation methods displayed by
Fig. 1.2.
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Characterisation of unoccupied buildings

The co-heating test

The co-heating test is a quasi-stationary protocol based on linear regression analysis of aggregated
measurements of building performance. The method has undergone several developments in the
literature since its first proposal [Sub+88]. A history and detailed description is given by [BR14], a
summary of which is given here.

The method is based on the heat balance of an unoccupied room maintained at a constant
temperature by electric heaters whose consumption is recorded. Indoor conditions (temperature
and humidity) and outdoor conditions (wind, temperature, sunshine) are measured continuously
during the test.

Figure 1.3: Setup of a co-heating test [BR14]

This is a quasi-static method, because an attempt is made to maintain a constant indoor
temperature for the duration of the test. The aim is to overcome the effects of inertia of the building
(thermal capacity of the envelope and the indoor air) and to write down its heat balance in a
simplified form:

Y ®+gAl, =HLCAG, (1.1)

where ) & is the total heat input from heating devices, A8;, is the indoor-outdoor temperature
difference, and I, the global solar irradiance. By linear regression of this model on averaged
measurements, two parameters may be estimated: the global heat loss coefficient HLC, and a solar
aperture coefficient gA.

Some pre-processing of the measurements is necessary before the regression. An indoor
temperature representative of the whole building must be reconstructed from the installed set of
sensors. The data collected at the beginning of the test, corresponding to the "warm-up" of the
building, should not be used since the model is based on a static balance. The points used for
regression are then measurements averaged over a certain time interval, e.g. hourly or daily.

In its simplest version, the co-heating test allows estimating the real HLC coefficient of the
building, as well as the solar aperture coefficient if solar gains are not neglected in the procedure.
The disaggregation of HLC in several terms, in order to separate the respective part of static and air
exchange losses, requires additional measurements: blower door or tracer gas.

A full description of the different test configurations developed over the years can be found in
[BR14]. This family of characterization methods has two drawbacks that prevent its application in
real conditions for the diagnosis of existing buildings :

» The regression is based on a static heat balance of the building aggregated into a single

thermal zone.

* The experimental protocol is set up so that inertia effects can be neglected.
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Figure 1.4: Linear regression on co-heating measurements [BR14]

The result of the regression is therefore a reduced number of parameters, which does not allow
the adjusted model to be used for predictive purposes, nor does it allow the identification of specific
pathologies in the building that would require rehabilitation.

The experimental protocol is based on intrusive instrumentation set up in an unoccupied room,
albeit for a measurement time reduced to a few days. The applicability of this protocol in real
conditions therefore remains restricted.

The QUB method

The QUB method (Quick U-Value of Buildings) was developed by the Saint-Gobain group in order
to reduce the measurement time required by the co-heating test [MPR12]. The thermal properties
estimated by the method are the HLC and the apparent heat capacity of the building. Its principle is
illustrated by Fig. 1.5

Tln\v ' P

TOUT [ TIN

Day D: Sunset Day D+1: Sunrise

Figure 1.5: Principe of the QUB method

The method is based on a dynamic RC model with one resistance and capacity (left of the
figure). Heating input is applied inside the building in three steps: an initialization period to reach
a uniform indoor temperature; a step of constant high heating power P; a second step of lower
power P,. These two steps are of equal duration. The indoor temperature of the building is recorded
during this test. The analysis of the measurements consists in noting the slope of the evolution of
the indoor temperature at the end of each time period (noted 7/ and 7y on the diagram). Assuming
that this evolution is then linear, the coefficient Houg and a thermal capacity indicator Cqug are
then deduced [Alz+18]. The hypotheses of the test are similar to those of the co-heating test:
unoccupied building and homogeneous indoor temperature . Measurements are made at night in
order to neglect solar gains and assume a constant outdoor temperature.

The duration of the test, which is shorter than a co-heating test, is determined by the initialization
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period and by that of the two heating periods. In the fastest version of the test, the various articles
where the QUB method is analysed [Meu+17; Sou+17] report Hqup coefficients estimated with
a precision of 10% based on two 4-hour or 6-hour slots. A decomposition of the time constants
of the building [GA19] describes this duration as sufficient to observe the time constants that are
prevalent on the behaviour of the building, despite the existence of much longer time constants. The
QUB test was applied to several test buildings to illustrate the results. Two published examples are:
the Energy House experimental house at the University of Salford [Alz+18; Meu+17]; a detached
house in Nottingham [Sou+17].

The ISABELE method

The ISABELE method (In-situ assessment of building enveloppe performance) [BB14; SB14]
assesses the energy performance of a new building right after construction. It was developed by the
CSTB institute, and contributed to the PERFORMER european project.

Test protocol of ISABELE method

Bint measured Bint simulated Bext ===« gheat

Temperatures [°C] Heating Power [W]
16 2500
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\ e 2000
r g e ;'(:“E decrease
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Figure 1.6: Settings of the ISABELE method

The method was developed to characterize the thermal properties of the envelope prior to the
occupancy of the building. This requires the shortest possible instrumentation time to collect the
necessary data. The experimental protocol is close to that of the QUB method, with the difference
that a temperature setpoint is imposed for a given period of time and that the evolution of external
conditions, especially solar irradiance, is also monitored. The data are then used to calibrate
an RC model providing the desired properties. The model is used to simulate the experimental
conditions, and its parameters are determined by fitting its outputs to the observations. The method
for minimizing the gap between predictions and measurements is, depending on the case, the
Nelder-Mead method [BB14] or Bayesian inference resolved by the MCMC algorithm [SB14].

The choice of any RC model makes it possible to attempt the simultaneous estimation of
parameters governing various phenomena: the respective influences of transfers via opaque and
glazed walls, air renewal and radiation. The article [BB14] thus addresses this problem of choosing
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the right model for the description of the building for the identification of its properties, also
described by [bacher_estimation_2011].

Characterisation of occupied buildings

The assessment of the intrinsic energy performance of an occupied building, independently from its
operating conditions, remains a challenge. The main reason for this is the complexity and variety
of phenomena which influence its energy balance, when it is operated by real occupants.

While the experimental protocols of the QUB and ISABELE protocols allow controlling the
thermal loads, those of an occupied building are the sum of several contributions ghich are not
always known: heating appliances, metabolic heat of the occupants, solar gains, heat losses of
electrical appliances, heat losses of the DHW network, etc. In addition, the available consumption
measurements (gas and electricity meters) cover other uses than space heating only, which has to be
extracted from them. On the other hand, the heat losses through the envelope are also uncertain: the
dwellings adjacent to the monitored thermal zone should be instrumented as well, in order to follow
the heat exchanges between them; the losses through ventilation and leaks in the envelope are to be
taken into account... Under these conditions, it is difficult to isolate the heat loss coefficient of the
walls alone.

Static methods, such as the energy signature and other linear regression methods, require
aggregated data which does not call for a detailed modelling of heat transfer phenomena. On the
other side of the complexity spectrum, the characterisation of occupied buildings with dynamic
methods was proposed with the so-called Bayesian calibration, described below.

Energy signature

Energy signature models are the simplest possible representation of a building as a static grey
box model, where parameters are identified by analyzing consumption measurements rather than
through detailed modeling (such as 3CL calculations or dynamic thermal simulation). So-called
energy signature methods are therefore the first proposals for describing the intrinsic performance
of a dwelling on the basis of measurements.

The energy signature of a building is a simplified model of its energy consumption profile (all
energies combined) as a function of the outdoor temperature. Over a sufficiently long measurement
period, the daily averages of heating power ®;, and outdoor temperature 7, are compared in order
to obtain by regression a profile approximating the following model:

D, 1

HLC6, 1

HLC

By 0

Figure 1.7: Principle of the energy signature
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@, = a+HLC (T, — T,) si. T,<T, (1.2)
@, =0 si T.>T, (1.3)

where the « coefficient is the baseline consumption of the building (DHW, lighting...) and T} is
the heating base temperature, as function of the indoor temperature set point and the solar gains.
The building is thus described by three parameters (o, HLC,T}). A similar model may be used to
describe a cooling load above a second threshold temperature.

The PRISM method [Fel86] is a typical example of an energy signature model. The mea-
surements required by the PRISM method can be collected without any intrusive instrumentation.
However, because of the simplicity of the formulation, these measurements must cover a sufficiently
long period of time for a clear trend to emerge. Since this is a static model using only averaged
daily values, it does not provide a detailed description of the heat loss types in a building. It has
however other uses, as summarised in this non-exhaustive list :

* [Fel86] uses the method to calculate a single indicator of normalized annual energy consump-
tion (NAC). This indicator describes the intrinsic performance of the building, decoupling
it from the influence of weather. It is therefore used to assess the actual performance gain
between before and after renovation, regardless of outdoor conditions.

* [RR92] proposed a generalisation of the PRISM method, including the effects of occupancy.
For a given building, the parameters (¢, HLC,7},) are identified in two different sets, cor-
responding respectively to occupied and unoccupied conditions. The number of days of
occupancy of an office building appears as additional data. Due to this additional complexity,
a statistical analysis of the results is proposed in order to quantify the uncertainty on the
identified parameters and on the NAC indicator.

* [Hamg87] illustrates the limitations of the method for the estimation of building parameters
(energy audit): the results of the method should be limited to the prediction of consumptions
on large time scales.

* [Flo92] supports this observation, and attributes the estimation error of building parameters
to insufficient consideration of solar gains. The author links the uncertainty in the estimation
of the heat loss coefficient to correlations between meteorological data (sunshine and outdoor
temperature).

* [SAOQ9] also find that the values found for the heat loss coefficient vary little when there is
little sunshine in cold climates.

The general observation is that static energy signature models can only be used as a basis for
physical interpretation of the building parameters with great caution. They do not make it possible
to disaggregate the different sources of heat loss (static losses, equipment efficiency, air change)
since the time scale of their observations is at least one day. However, they have the benefit of not
using intrusive instrumentation and allow interpreting measurements made in occupied buildings.

Bayesian calibration

Dynamic models allow reducing the measurement time needed to learn the thermal properties of
buildings, and observing the effects of inertia not covered by static models. On the other hand,
in order to be able to learn parameters calibration on measured data, it is essential that all the
influential phenomena are represented by the selected model, on a time scale corresponding to the
chosen level of detail. This implies, for example, that if a model is based on a time discretization of
10 minutes, then the internal heat sources and consumption readings must be known with the same
precision. This requirement naturally poses a problem in occupied premises, where the behaviour
of the occupants (presence, interaction with the envelope) must therefore be supplied to the model
or evaluated by it.
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In order to perform an informative calibration in occupied premises, a recent lead followed
by several research teams is the use of hybrid systems incorporating statistical models (black box
model) in the description of heat transfers (grey box model). Gaussian processes [Ras04; Sol16]
(GP) are, for example, a type of non-parametric models used to represent random phenomena
that are not explicitly described in the building thermal model. This allows them to be used for
parameter prediction and estimation despite the presence of significant uncertainties and unobserved
phenomena.

» Bayesian model calibration refers to using a GP as a surrogate model to reproduce a reference
model, then training a second GP as the discrepancy function between this model and
observations, then evaluating the posterior distribution of calibration parameters. In this
context GPs have static inputs and are not dynamic models.

* Gaussian processes can also simulate dynamical systems through a state-space representation
[Sol16]. Once included as a non-measured input into a state-space This opens the way
to Latent Force Models (LFM). LFMs can be seen as hybrid models that contain a first-
principles physical model part and a non-parametric GP model part. They are used for
learning and stochastic control in physical systems which contain unknown input signals.
These unknown signals are modeled as Gaussian processes (GP) with certain parametrized
covariance structures [SAL18]. To the author’s knowledge, the only application of this
method to building energy is [Gho+15].

The first approach mentioned above was originally proposed by [KOO1], in what they call the

Bayesian approach to the calibration of computer models.

zi=C(xi)+ei=pn(x;,0)+(x;)+e (1.4)

where x; is a series of known model inputs, z; are observations, §(x;) is the true value of the real
process, 1(x;, 0) is a computer model output with parameter 6, d(x;) is the discrepancy function
and e; ~ N(0,7) are the observation errors. In [KOO1], GP are used to represent prior information
about both 1(-,-) and 8(-). p and A are hyperparameters, to be added to the list of hyperparameters
of the covariance functions into a global hyperparameter vector ¢.

Before attempting prediction of the true phenomenon using the calibrated code, the first step is
to derive the posterior distribution of the parameters 0, B (parameters of the GP mean functions)
and ¢. Hyperparameters are estimated in two stages: 7n(-,-) is estimated from a series of code
outputs, and () is estimated from observations. [KOO1] restrict their study to having analytical,
tractable posterior distributions that do not require methods such as MCMC. Therefore they fix
the value of some hyperparameters to make these functions tractable, and have to resort to some
simplifications.

The same approach was done by [AAC12] (see Fig. 1.8) who investigated the question of the
identifiability of calibration parameters 8. Their formulation is very similar to [KOO1]:

Y(x)=y"(x,0")+6(x)+¢€ (1.5)

A series of computer model runs is used to train a first GP on simulation data. Then, the discrepancy
function is modeled by fitting another GP based on simulation data, experimental data and the prior
for the calibration parameters.

To the author’s knowledge, the first application of this method to buildings was [HCA12].
They followed the formulation of Bayesian calibration developed by [KOO1] and used three sets
of data as input: (1) monthly gas consumption values as observations y(x), (2) computer outputs
from exploring the space of calibration parameters 1 (x, 0), and (3) the prior PDF of calibration
parameters p(0). The model outputs 1(x,0) and the bias term & (x) are both modeled as GPs.
Calibration parameters are for instance: infiltration rate, indoor temperature, U-values, etc. With
very little data, results of [HCA12] are posterior PDFs which are very close to the priors.
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Figure 1.8: Modular Bayesian approach from [AAC12]

GP learning scales poorly with the amount of data, which restricts its applicability to lower
observation time steps. [KCP17] studied the influence of time resolution on the predictive accuracy
and showed the advantage of higher resolutions. More recently, [Cho+17] used the NUTS algorithm
for the MCMC sampling in order to accelerate learning. In [CM 18], they give a summary of publi-
cations using Bayesian calibration in building energy. In [MS18], a hybrid model is implemented.
A zero mean GP is trained to learn the error between the grey-box model and the reference data
(Fig. 1.9). As in the previous references, both models are added to obtain the final predicted output.
They are trained in sequence: the GB model has some inputs ugg and is trained first (Fig. 1.10);
then the GP has some other inputs ugp and is trained on the GB model’s prediction error. Results
are the hyperparameters of the GP.

Uce Yop
—

Grey-box Model

Ugp i
— Gaussian Process

Hybrid Model

Figure 1.9: Diagram of the hybrid model from [MS18]
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—2 Grey-Box Model = Gaussian
Process —2»
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——Reference System

Figure 1.10: Training procedure of the hybrid model from [MS18]
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Models trained by this method are said to have very good prediction performance, since the GP
predicts the inadequacy of the GB as a function of new inputs, not included in the physical model.
However, the method may not be fit for the interpretation of physical parameters. Indeed, since the
GB model is first trained independently from the GP, it is biased and its parameter estimates are not
interpretable.

The BAYREB project

Objective: characterisation before refurbishment

The BAYREB project belongs to the general field of the energy refurbishment of buildings. It aims
at providing decision makers and renovation experts with decision support tools for the renovation
process regarding energy efficiency. The project is part of a workflow based on stochastic methods
that will support the decision process in a twofold manner:

» Using in situ sensor measurements, aided with Bayesian inference and a prior model of the
building, to evaluate its real energy performance, diagnose envelope properties and eventual
pathologies, while providing confidence intervals for all inferred data;

 Using the acquired knowledge of the true state of the building, and its uncertainty, as a basis
for the elaboration of optimal renovation solutions.

The project focuses mostly on the first stage of this process: proposing a method for a detailed and
robust energy audit.

The renovation process of individual or collective buildings is generally solely based on their
initial yearly energy consumption, and standard solutions are applied without any guarantee of
performance. A condition for a cost-effective refurbishment, adapted to each specific building,
is to perform detailed diagnostics of its performance prior to picking solutions: for instance, to
estimate which proportion of the heat losses are caused by air leakage, by the envelope, or by a
dysfunction of the heating systems. The first option to achieve such a detailed audit is to use an
excessive amount of sensors, surveys and in-situ measurements, followed by lengthy interpretation
of results in order to point the weaknesses of the building regarding energy efficiency. The second
option is to implement inverse techniques, which are able to automatically learn from the data in
order to construct a realistic representation of the characteristics of a building.

The target of the BAYREB project is to use in-situ measurements (temperature, humidity, CO,)
to acquire the knowledge justifying the choice of the most suitable rehabilitation solution. The
characterization of the properties of the envelope via in situ instrumentation is already proposed
by the methods described above (section 1.2). However, these methods are not all applicable to
pre-renovation diagnosis because their experimental protocol is not feasible in occupied premises,
and/or their results are too aggregated to evaluate the effects of different renovation solutions.

The challenges of the project are therefore twofold:

* First, the behaviour of the building must be monitored in its normal conditions of use, with
no ability to set controlled boundary conditions, and measured with sensors of limited type
and accuracy. This potentially leads to high measurement uncertainties and poorer data sets.

» Secondly, we wish to disaggregate the different sources of heat loss, in order to enable the
renovation decision. The model calibrated by the inverse problem must therefore have a
sufficient level of detail.

Statistical learning and inverse problems in building physics

According to the definition of [BW98], inverse techniques are a suite of methods which promise to
provide better experiments and improved understanding of physical processes. Inverse problem
theory can be summed up as the science of training models using measurements. The target of such
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a training is either to learn physical properties of a system by indirect measurements, or setting up
a predictive model that can reproduce past observations.

In the last couple of decades, building physics researchers have benefitted from elements of
statistical learning and time series analysis to improve their ability to construct knowledge from
data. What is referred to here as inverse problems are actually a very broad field that encompasses
any study where data is gathered and mined for information.

* Material and component characterisation: many material properties are not directly ob-
servable and must be estimated by indirect measurements. Inverse heat transfer theory
[Bec85] was developed as a way to quantify heat exchange and thermal properties from
temperature sensors only, and has translated well into building physics: for instance, the
characterisation of heat and moisture transfer properties of materials is an inverse problem
under investigation [Ber+16; KK96; Rou+15; Rou+17] because of how time consuming
traditional hygric characterisation methods are.

* Building energy performance assessment, from the original energy signature models
[Fel86; RR92] to co-heating tests [BR14], is an inverse problem. It can be used to for-
mally estimate the energy savings after retrofit measures [HZ12; Zha+15] or to point out
faults in system or envelope performance [HCA12].

* Model predictive control [HGP12] requires models describing the thermal behaviour of the
building, as well as the internal and external influences on its performance. Inverse problems
thus include the identification of building energy performance models, weather forecast
models [DL14; Old+12], occupancy behaviour models [DH15; DA09], that are reliable and
computationally efficient.

These scientific challenges are gaining visibility due to the increasing availability of data (smart
meters, building management systems...), the increasing popularity of data mining methods, and
the available computational power to address them.

Many engineers and researchers however lack the tools for a critical analysis of their results.
This caution is particularly important as the dimensionality of the problem (i.e. the number of
unknown parameters) increases. When data are available and a model is written to get a better
understanding of it, it is very tempting to simply run an optimisation algorithm and assume that
the calibrated model has become a sensible representation of reality. If the parameter estimation
problem has a relatively low complexity (i.e. few parameters and sufficient measurements), it can
be solved without difficulty. In these cases, authors often do not carry a thorough analysis of results,
their reliability and ranges of uncertainty. However, it is highly interesting to attempt extracting the
most possible information from given data, or to lower the experimental cost required by a given
estimation target. System identification then becomes a more demanding task, which cannot be
done without proof of reliability of its results. One should not overlook the mathematical challenges
of inverse problems which, when added to measurement uncertainty and modelling approximations,
can easily result in erroneous inferences.

In order to answer the questioning presented above, the project started with a significant
literature review on the applications of inverse problems and statistical learning in building sciences,
which was published in [Roul8].

Layout of this report

This report presents the methodology followed by the BAYREB project in order to meet its
objectives: addressing the scientific challenges towards a detailed estimation of an occupied
building’s thermal properties, using only a non-intrusive measurement procedure.

Chapter 1 presented a state of the art of building energy performance assessment, and an
overview of several recent research projects on the topic.

Chapter 2 describes the entire workflow of characterisation and the choices made to answer
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the project’s questioning: which sensor information is required, what type of model has been
selected, what algorithms were used to calibrate them, and what criteria were used to evaluate the
validity of results.

Chapter 3 introduces the numerical benchmark that has been developed to study the iden-
tifiability of the heat transfer properties of buildings. It is a virtual test environment that allows
recreating variations of a reference building and weather data, in order to assess the interpretability
and robustness of calibration results.

Chapter 4 includes all results of the project regarding applications to real data process-
ing, either measured in unoccupied experimental test cells, or in real occupied buildings. Each case
aims at answering one of the main questions of the project: how to ensure the reproducibility of
results, how to perform real-time parameter estimation, how to separate air change related heat loss
from transmission heat loss, etc.

Chapter 5 introduces some of the outlooks of the project.
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(2. Modelling, calibration and inference

This chapter introduces all the numerical methods used in the BAYREB project to solve the
inverse problem of the energy characterisation of buildings in real conditions of use. It does not
constitute a complete review of the models and algorithms developed in the literature, but focuses
on the methods selected for the project, and justifies these choices. Due to the ill-posed nature of
inverse problems and the need to process their results with caution, emphasis will be placed on the
validation stages of modelling and calibration.

The objectives of thermal model calibration

Before describing and justifying the choices of methods for modelling and inference, let us start
by laying down the definitions and hypotheses behind what we seek to estimate: the energy
performance of the building envelopes, which cannot be directly measured.

Fig. 2.1 shows a schematic outlook of heat gains and losses in a heated space. The temperature
variation, on the right side of the diagram, comes from the imbalance between all heat gains (P,
res lines) and all heat losses (®,,;, blue lines).

aT
CW = q)in - q)out (21)
The term of heat loss may be broken down as such:
Do = Ho (T — 1)+ Hy (T — T;) + Y HiY (T — Tugjj) + @iy + Py (2.2)
J

o The first term Hf. (T; — T,) denotes heat loss by direct transmission from the heated room
at temperature 7; to the outside at temperature 7,. The H;. coefficient includes the heat
transmissivity of opaque walls, glazing and thermal bridges.

* The second term Hj. (T; — T,) denotes heat loss towards the ground at temperature 7.

* The third term encompasses heat exchange with all adjacent rooms. This mainly concerns
unheated spaces, which may have a significant temperature difference with the thermal zone
under consideration.
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Figure 2.1: Decomposition of heat gains and losses in a heated zone.

e &, et D, respectively denote heat loss from air infiltration or mechanical ventilation.

The objective of the project is to characterise the envelope of a building by estimating the terms
of this decomposition, and to find out if non-intrusive measurements are sufficiently informative to
disaggregate them.

The first three terms of this decomposition may be aggregated in order to define two global
indicators of the heat performance of the envelope: the Heat Loss Coefficient (HLC) and Heat
Transfer Coefficient (HTC).

@ = HTC (T —T,) 4 Dy +P, (2.3)
HLC(T-T,)
HLC = HTC + &,/ (T — T.) (2.4)

The HTC describes all heat transmission through the envelope, and the HLC also includes the
effect of air infiltration. Controlled mechanical ventilation is not included in these coefficients, but
may as well be considered as part of the heat gains.

One of the main questionings of the project already arises from Eq. 2.2: is it possible to estimate
separate heat transfer coefficients using only measurements that may be recorded without disturbing
the normal operation of the building?

The second challenge posed by the specifications of the project arises from the difficulty of
knowing the actual total heat gains ®;, in Eq. 2.1. The red part of Fig. 2.1 illustrates the diversity
of heat sources inside a thermal zone.

* The energy consumption dedicated to space heating is only a part of a meter reading (e.g.

gas) which includes production and distribution losses, and often also cover the production
of domestic hot water (DHW).
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* The heat gain from electrical appliances, cooking, lighting and other uses, is difficult to

estimate. It is a certain percentage, subject to fluctuations, of the electricity meter readings.

» The solar gains are usually significant, and a fraction of the total solar irradiance which

depends on the orientation of the room relative to the position of the sun, shadings, type of
glazing, etc.

* The metabolic heat gain from occupant depends on their presence. It may have an impact on

the total heat balance of well insulated buildings.

There are therefore two obstacles to the disaggregation of heat loss coefficients. First, the
coefficients we use to describe the envelope performance are not directly observable. Second, the
system under consideration is under a series of excitations, some of which are unknown or difficult
to monitor. In order to meet the project’s requirements, careful and documented choices will have to
be made regarding the types of measurements to perform, the structure of models used to simulate
the building, the training algorithms used to calibrate these models, and the criteria used to assess
the validity of their results.

Model calibration formulation and workflow

Calibrating a model means finding the settings or set of parameters with which its output best
matches a series of observations, called a training dataset. This data usually originates from
measurements (in either experimental test cells or real buildings), but may also have been produced
by a complex reference model that we wish to approximate by a simplified one.

Observed building | Measured 7, :
= obs

Measured output y

inputs

A TN
t
| T
Residuals ) Find @ that minimises
Parameters 0 1 r2(0) = (y — 9(8)) r2(x)
|

L4 ‘

Model Calculated
bl output §(8)

Figure 2.2: Model calibration in a nutshell

The general principle of solving a system identification problem is to describe an observed
phenomenon by a model allowing its simulation. Fig. 2.2 illustrates the principle of model
calibration. Measurements z = (u,y) are carried in an experimental setup: a building is probed for
the quantities from which we wish to estimate its energy performance (indoor temperature, meter
readings, climate, etc.) A model is defined as a mapping between some of the measurements set
as input u (boundary conditions, weather data) and some as output y. The model equations are
parameterised by a finite set of variables 8. Parameter estimation is the process of assessing 8 from
a discrete set of N data points y;.y = {yx,k € 1...N}.

The output of the ideal, undisturbed physical system is noted y*, which is the hypothetical
outcome of an ideal, non-intrusive sensor. Under the hypothesis of additive measurement noise
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€(t), the observed output sequence is:

Yk =Yk + & (2.5)

The most common situation is that of additive white gaussian noise, i.e. & ~ .47(0,0) is a sequence
of independent and identically distributed (i.i.d.) variables, where the k index denotes data points
and the measurement uncertainty ¢ may or may not be known.

The aim of the inverse problem is to approximate the system with a mathematical formulation
of the outputs (¢, 0) that will allow the estimation of 6. Ideally, the model is unbiased: it accurately
describes the behaviour of the system, so that there exists a true value 8* of the parameter vector
for which the output ¥ reproduces the undisturbed value of observed variables.

y'(t)=§(,07) (2.6)

Eq. 2.6 is written in continuous time: the discrete system output from Eq. 2.5 is the series of values
taken by the continous process y*(¢) at the time coordinates {#;,k € 1...N}. In the following, the
continous and discrete notations of each variable may be used alternatively.

In practice, 8* will never be reached exactly, but rather approached by an estimator 8, which
may hold different values according to the criteria it follows. The hypothesis of an unbiased model
v (Eq. 2.6) states that there exists a parameter value 6* for which the model output is separated
from the observations y only by a zero mean, Gaussian distributed measurement noise. It means
that the model perfectly reproduces the physical reality, and the only perceptible error is due to
the imperfection of sensors. This is exceedingly idealistic because all models are wrong to some
extent. Building energy simulation is a multi-physics, multi-scale topic that cannot accurately
portray all phenomena of heat and mass transfer: forward problems are always simplified to some
extent. The identification procedure is a series of experimental and numerical steps along which
lay several sources of errors [MJP11b]: the forward problem is an approximation of the modelled
physical process, with a given spatial discretisation; a hypothesis on the model may be excessively
simplifying or the parametrization of a function may be wrong; the intrusiveness of a sensor may
be overlooked; measurements are affected by noise and depend on sensor calibration, etc.

The most intuitive way to calibrate a model is to minimize and indicator such as the sum of
squared residuals with an optimisation algorithm, in order to find the value of 6 that makes the
model most closely match the data. Modelling approximations are problematic because inverse
problems are typically ill-posed [BW98]: their solution is highly sensitive to noise in the measured
data and approximation errors. A global optimum of the inverse problem may then be found with
unrealistic physical values for the material properties as a consequence of seemingly moderate
errors made when setting up the problem. In order to address these issues, a probabilistic framework
is used to describe all steps of the procedure while accounting for all known sources of uncertainty.
The observations, model outputs and parameter values are all defined in terms of probability
distributions rather than single values.

In order to ensure, as much as possible, that the parameters returned by the model calibration
procedure are physically interpretable, a workflow was developed in the project and shown on Fig.
2.3. This workflow sums up the important steps that be followed before and after applying the
training algorithm itself, and the various tests to be performed to prevent hasty conclusions. The
steps are summarized below, and detailed in the following sections.

Data acquisition and processing
Measurements are an insight of the real behaviour of a building, and are the basis for training

models to reproduce it. The required types of monitoring depend on the characterisation target
and on the specific energy uses of the building under study. Other important characteristics of the
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Figure 2.3: Proposed workflow for model selection, calibration and validation

data are: the type and accuracy of sensors used for a given measurement, the acquisition time step,
the spatial granularity of observation. Data pre-processing, which includes handling irregular or
incomplete data, is also a requirement for reliable training results. An example of processed dataset
is shown on Fig. 2.4.

ti te Qh Qi isoldif isol WindDirection WindSpeed m_vent T_vent

2018-12-21 00:00:00 210601 2.2 3320 O 00 0.0 239.0 2.2 0.066667 7.25
2018-12-21 00:10:00 210780 2.1 3310 O 00 0.0 253.0 2.1 0.066667 7.25
2018-12-21 00:20:00 206715 1.6 1100 O 00 0.0 2370 2.8 0.066667 6.90
2018-12-21 00:30:00 20,0508 0.6 590 O 00 0.0 217.0 2.6 0066667 6.65
2018-12-21 00:40:00 198456 05 580 O 00 0.0 236.0 2.0 0.066667 6.35

Figure 2.4: Insight of the header of a data file

Modelling

Selecting an appropriate model structure is essential to the learning procedure. The complexity
of the model is a compromise between realism and parcimony: it should at least describe all the
most significant processes occuring in the system, and should not allow any redundancy in the
input-output relationship. Among several models, equally capable of reproducing a dataset, the
best choice is usually the most simple one [HTFO1].

Before being fitted by statistical learning, a numerical model should pass a test of structural
identifiability, which will detect an eventual redundancy in its formulation or its parameters. This
step is described below in Sec. 2.3 along with the choices of models used within the BAYREB
project.

Calibration

Calibration refers to the search for the parameters of a model, with which it outputs the best
possible fit with a given training dataset. The most intuitive way to solve the problem for the
optimal model parameters is to minimize a measure of model adequacy, such as the sum of squared
residuals between its output and the observations, with an optimisation algorithm. The output of
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this procedure is the mean value and covariance matrix of the estimated parameters.

The training algorithms used within the project will be described in Sec. 2.4. They include
deterministic training by maximum likelihood estimation, and Bayesian inference, which allows
letting some prior knowledge of the system influence the results.

Validation of the calibrated model

The ill-posed nature of inverse problems makes their results particularly sensitive to the various
sources of uncertainty that punctuate the overall solving procedure: measurement uncertainties
modelling assumptions, discretisation approximations, intrusiveness of sensors, etc. [MJP11a].
Before the estimated parameters may be physically interpreted, some precautions should be taken.
Sec. 2.5 will describe the two main validation tests which are necessary conditions for parameter
interpretability:

* Residuals analysis checks that the deviation between the predictions of a calibrated model
and measurements is close to white noise. If this is not the case, the model is insufficient to
explain all the phenomena generating the observations: its complexity should be increased.

* Practical identifiability analysis of parameters assesses whether their estimates are bounded.
Otherwise, there is a need to reduce the complexity of the model or increase the observation
period.

These tests are described in [Roul8] and in Sec. 2.5 below.

Modelling

Only the model structures used within the BAYREB project are presented here. A more thorough
list of options is available in [Roul8].

Linear regression

Linear regression has already been mentioned earlier, as it includes some of the methods introduced
in Sec. 1.2, especially the co-heating test and the energy signature models.
As an example of how the energy balance of a building may be formulated as a linear regression
problem, let us start from Eq. 2.1 and reformulate it under the following assumptions:
* Steady-state conditions d7 /dt of a single-zone building.
* The only heat gains to the building are from heating ®;, and solar gain ®; = gsly,;, where ga
is a solar aperture coefficient.
* The heat loss through all parts of the envelope is assembled into a global heat loss coefficient
HLC.
Under these very convenient assumptions, the energy balance of a heated zone may be ap-
proached by:

@, =HLC (T, — T..) — gaLsoi 2.7

where @, (T; —T,) and I, are measured data. In order for the steady-state assumption to hold,
each data point of these series must be representative of an equilibrium state of the building, which
means that higher-resolution time series data should be averaged on a long enough time step size.

The goal of linear regression analysis is to determine a linear relationship between a dependent
variable y and one or several independent variables x.

y = 6y+ 61x1 + 6x2 (2.8)

In the above example, the model output y is the measured heating power ®;, and the inputs x|
and x; are the other measured series (7; — 7,) and I,;. By fitting this model, for instance with the
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ordinary least squares method, one may estimate the 0; and 6, coefficients, which respectively
represent HLC and g4 in our example. Eq. 2.8 may additionally include a constant intercept 6.

Linear regression models have several limitations: they cannot represent non-linear phenomena,
such as radiative heat exchange between walls; they don’t allow identifying the parameters driving
dynamical phenomena; they impose a fixed structure to the energy balance equation. Despite these
limitations, they can however be very useful as a first insight into the heat balance of a building:
they allow a quick assessment of which types of measurements have an impact on the global balance
(see Sec. 4.2) and guide the choice of more detailed models. Moreover, if a large enough amount
of data is available, the estimates of some coefficients such as the HLC often turn out to be quite
reliable.

State-space models

State-space models (SSM), which include the simplified resistor-capacitor (RC) model structures,
are a popular choice for either parameter estimation or system identification. When written as a set
of Stochastic Differential Equations, they allow accounting for modelling approximations [BM11;
JPHOS8; KMJ04; MH95] and offer a more reproducible parameter estimation than deterministic
models that overlook modelling errors [RRO18].

The formulation of SSM with an example

Consider the example of a simple building represented by a 2-resistor, 2-capacitor model structure
(2R2C) as shown by Fig. 2.5. The equations of this model are:

® Observed model input

@ Non-observed state
AiIS Aels ® Observed model output
Unknown parameter

Ta
Ri Re
| Ci I Ce
T, T.
u=|®n| x= | vem e=ReR.CCaALAD
S
Figure 2.5: Model with 2 resistors and 2 capacitors
1
G dT; = E (Te — T;) dr +®dr +A;ldr + o;dw; 2.9)
i
1 1
C.dT, = R (T;—T,)dr + R (T,—T,)dt + A I,dt + o, dw, (2.10)
i e

where T;, T, and T} are the indoor, envelope and ambient (outdoor) temperatures. The envelope
temperature is associated with the thermal mass of the opaque surfaces, and does not represent a
specific coordinate within the envelope. The model has two states 7, (unobserved) and 7; (observed);
®;, (W) is the indoor heating power; I (W/m?) is the global horizontal solar irradiance. R; (K/W)
is the thermal resistance between the indoor air temperature and the envelope, R, the resistance
between the envelope and the ambient air. C; and C, (J/K) are the heat capacities of the interior and
the envelope, respectively, and A; and A, (m?) are their solar gain coefficients. {®;} and {®,} are
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standard Wiener processes. 61-2 are o7 are their variances. This process noise is a way to account
for modelling approximations, unrecognized inputs or noise-corrupted input measurements.

Despite its simplicity, this model structure is able to reproduce the thermal behaviour of a
simple unoccupied building [RRO18]. Eq. 2.9 and 2.10 can be written in matrix form:

T _ 1 1 T O l kJ Ta
d[Tl] —( k& RG [Tl] de+( 6 O] |®n| d+odo  (2.11)
. : : e R.C. /)|

which is the state equation in the following stochastic state-space model, written in continuous-
discrete form:

dx(t) = Agx(t)dt +Bgu(t)dr + cpdw (2.12)
y: =Cox; + & (2.13)

A state-space model is a set of two equations: the first one, the state equation (Eq. 2.12), results
from the physical formulation of the system. Its matrices Ag, Bg and o are given the 6 subscript
to indicate that they depend on a parameter 6, which is the set of unknown values to be estimated:
resistances, capacities, solar gain factors and variances of the Wiener processes. The state vector x
includes the temperatures 7; and T, calculated by the model, and u = [T, Py, [;] is the input vector
including boundary conditions and excitations. The second equation, Eq. 2.13, is the observation
equation. It indicates that the measured quantity y; may be different from the output of the state
equation. In our case, the observed temperature is only the first component of the state vector, and
is encumbered with some measurement error &. In this equation, time is noted as a subscript to
indicate that observations come in a discrete sequence.

Discretisation

The stochastic model described by Eq. 2.12 must be discretized in order to specify its evolution
between discrete time coordinates. Let us denote the sample interval length Ar and assume that
the inputs u(¢) are constant during each interval. Eq. 2.12 and 2.13 can be discretized into the
following discrete linear system of equations:

Xy = F9 Xr—1 +G9 u; + w; (214)
y: =Cox; +v, (2.15)

where x; denotes the vector of states at the time coordinate ¢, and y; denotes the observations. The
Fy and Gg matrices of the discrete equation result from the matrices of the continuous equation
2.12 using the usual state-space discretization method. Their coefficients are functions of 6 and of
the time step size Ar. Similarly, the process noise in discrete time w; ~ .4 (0,Q,) has a covariance
matrix Qg that can be calculated from the covariance matrix of the process noise in continuous time
o. The observation error v, has a covariance R, which depends on the variance of & and the time
step size.

The discretization equations are given here, and are available with more detail in [MH95;
Roul8]:

Fg =exp(AgAr) (2.16)
Go=A,' (Fo—I)By (2.17)
At
Q- / exp(Ag Ar) Gexp (AT A7) dr (2.18)
0
1
R = var(e) (2.19)

where A, B and C are the matrices of the continuous linear system 2.12 and 2.13.
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The Kalman filter equations

Given a state transition probability p (x;|0,x,_1,u;) (Eq. 2.14) and an observation probability
p(y:/x;) (Eq. 2.15), a Kalman filter produces p (x;|yi.7,0), the probability distribution function
of each state x; given measurements and parameter values, and the marginal likelihood function
Ly(0) = p(y1.7|0). Its algorithm has been described by many authors including [MH95; Rou18]
and is shortly recalled here.

Filtering produces p (X;|yi.v,0), the probability distribution function of each state x, given
measurements and parameter values. In the following, definitions adapted from [SS16a] are used:
X,|s 1s the expected state at time 7 given observations up to time s. P is the variance of the state x;,
i.e. the mean-squared error.

X,|s = E(X¢|y1:s,0) (2.20)
P, = Var (x;|y1:56) = B [(x — X,,) (% — X,5)" [¥1:5, 0] (2.21)

The Kalman filter algorithm is described here and illustrated by Fig. 2.6:
* Set the initial states Xq|o and their covariance Pq
e fort=1...T:
1. Prediction step: given the previous state X, and its covariance Py, the model estimates
the one-step ahead prediction.

Xi1)r = Fo Xy|r + Gou, 1y (2.22)
P, =Fox F{+Q (2.23)
2. Innovations (prediction error) &1 and their covariances X, are then calculated,

along with the Kalman gain K, |, by comparing measurements y; | (see Fig. 2.6)
with the one-step ahead prediction X, 1|,

&+1=Yr+1 —HoX 1) (2.24)
%1 =HoP Hj +R (2.25)
Ko =Py, HyZ (2.26)

3. Updating step: the new states at time ¢ 4 1 are updated, as a compromise between the
one-step ahead prediction and the measurement.

X1 = X1 + Kep1 &4 (2.27)
Pt+1|t+1 = (I — K1 HG) PI+1|t (2.28)

* The total (negative) log-likelihood can be calculated up to a normalizing constant:

T T
—InLy(0) = % Y In|%,(6)]+ % Y &(6)"5(6) " &(0) (2.29)
t=1

t=1

Roughly speaking, the Kalman filter applies Bayes’ rule at each time step: the updated state
p(X(|y1:1) = A (X1, Py);) is a posterior distribution, obtained from a compromise between a prior
output of the model p(x;|y1.—1) = 4 (X1, P—1) and the evidence brought by measurements y;.
Their relative weight is expressed by the Kalman gain K, that measures the relative confidence we
put in both the model and the measurements.

This standard Kalman filter algorithm works for linear systems only. Non-linear systems require
another filter, such as the Extended Kalman Filter (used by [KMJO04]), the Unscented Kalman Filter
[WMOO], or the particle filter.
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Figure 2.6: Schematic view of one iteration of the Kalman filter

2.3.3 Gaussian Processes and Latent Force Models

Gaussian Processes (GP) are a type of non-parametric models used in machine learning applications
[Ras04]. In time series analysis, Gaussian Processes are used for learning input-output mapping,
e.g. y = f(t) where the time ¢ is the input of the function. The dissertation [Sol16] provides insights
on the connection between temporal GP models and stochastic differential equations describing
the evolution of the process over the temporal domain. Covariance functions can be represented in
terms of a dynamical model (the GP prior) and measurement model of the form:

df, = Agf, dr + Qg2 dw, (2.30)
vk = Cgf +vi (2.31)

where f; = (fi(¢), ..., fu(t)) contains p stochastic processes. The system is defined by the state
matrix Ag, the scaling matrix Qg and the initial state covariance matrix Py = var(fy); the model
(2.30-2.31) is a special case of the model (2.12-2.13) with no input vector.

Latent Force models (LFM) can be seen as hybrid models that contain a first-principle physical
model part and a non-parametric GP model part. They are used for learning and stochastic control
in physical systems which contain unknown input signals. These unknown signals are modeled
as GP’s with certain parameterized covariance structures. The Latent Force Model is obtained by
combining the physical state-space (2.14-2.15) and the Gaussian process state-space (2.30-2.31)

[SALI18]:
dx; = (Apx, + BiCof: + Byu,) dr +Q, /2 dw, (2.32)

df, = Agf, dr + Qg2 dw, (2.33)

Yk = CpXp+ i (2.34)

where By € RP*4 is the input matrix for the latent forces.

Gaussian processes can therefore be used to include uncertain or unobserved phenomena into
the physical equations of an RC model: training a purely RC model may be sufficient to predict a
system observed in controlled, well-known conditions. However, all the phenomena and boundary
conditions are seldom known or measured, which can bring a bias to the physical interpretation
and the prediction of the estimated model. In this case, a Latent Force Model can be used to model
these unknown input signals (latent forces). An example of LFM application to building energy
performance assessment is [Gho+15].



234

2.3 Modelling 29

Checking for structural identifiability

The usual definition of identifiability originates from [BA70]. This notion was originally predomi-
nantly developed to help understanding complex biological systems, each of which is modelled
by a specific set of differential equations with unobservable parameters. The question of identifia-
bility is whether the input-output relation of the system may be explained by a unique parameter
combination 6.

y(0)=y(8)=06=20 (2.35)

Two conditions are required for the parameter estimates to be identifiable: the model structure must
allow for parameters to be theoretically distinguishible from one another, with no redundancy; the
data must be informative so that parameter uncertainty is not prohibitively high after identification.
These conditions are respectively denoted structural and practical identifiability.

Structural identifiability relates the possibility of finding parameter estimates to the structure of
the model, independently from measurements. Let us illustrate this question in the particular case
of linear, time invariant systems. This includes RC models for buildings where not all temperature
nodes are observed. It was shown by [GG76] that two sets of parameter values are indistinguishable
if and only if they both yield the same impulse responses and transfer functions.

Linear models

The first way to check for structural identifiability of a linear state-space model such as Eq. 2.12
and 2.13 is to take a Laplace transform of the system and check whether the same input-output
relation implies an unique parameter set [WP97]. This analysis is illustrated here with the 2R2C
model example (Fig. 2.5). The system can be written in Laplace form as:

sX(s) =AX(s)+BU(s) (2.36)
Y(s) = CU(s) (2.37)
The transfer function of this system is then a [1 x 2] matrix:
Y(s) ~1
H(s,0) = = L-A) B 2.38
(S, ) U(S) C (S 2 ) ( )
1 1 1 Ri+R,

_ gt Re 2.39
o, GRFCR+CR T |CCRR. ¢’ CCrR, (2-39)

CCRR, ' GCRiR,
Note that this derivation can be done manually due to the simplicity of the 2R2C model. In case of
a more complicated linear model, a symbolic computation software is preferable.
The system is structurally identifiable iff the unicity of transfer function implies the unicity of
parameters:

H(s,0) =H(s,0) = 606=190 (2.40)

This is solved by checking for unicity of each term of the transfer function for two parameter sets 0
and 0:

T e (2.41)
CiCeRiRe CiCeRzRe
1 1
R — (2.42)
CiC.RiR, ‘C.RiR,
1 1
r_1 (2.43)
C. .
Ri+R. _ Ri+R, (2.44)
C/C.RR.  CC.RR, '
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One can quickly check that the unicity of two transfer functions H(s, 8) and H(s, 8) indeed implies
the equality of each individual parameter: the condition of structural identifiability is satisfied.

A second method for structural identifiability analysis of linear models is to express impulse
response with its Markov parameters. This was done by [ASK12] for the identification of a multi-
zone thermal model, as a preliminary step to study the impact of experimental data quality. A more
complete description of this method is available in [Roul8].

Non-linear models

The issue of structural identifiability however applies to all classes of models, and not only RC
networks. The identifiability of non-linear models is analysed from the same theoretical basis
[BA70; GG76]: proving that the input-output relation of the model can only be explained by a single
set of parameters. Recent overview articles [GMJ17; Rau+14] provide a list of a priori structural
identifiability analysis methods. Particularly, [GMJ17] give a particularly clear explanation of the
following alternatives, and apply them linear and non-linear models close to those used in building
simulation.

* The Taylor series expansion approach was theorised by [Poh78]. It relies on the uniqueness
of the coefficients of a Taylor series expansion of the output with respect to time. This
philosophy is therefore similar to the impulse response method, except that the model is dealt
with in continuous time. There exists and order of differentiation for this series expansion,
which coefficients form a non-linear algebraic system of equations in the parameters and
from which the structural identifiability may be pronounced. Its solvability is checked by the
rank of the Jacobian matrix. As underlined by [Sed01], the order of differenciation in this
method is not bount, which can lead to highly complex calculations as the models grow large.
The author circumvents the exponential complexity by the use of differential algebra for the
series expansion. For this purpose, [Sed01] developed an algorithm available on Maple and
later [KAJ12] on Mathematica.

» Based on the differential algebra theory, a global identifiability analysis can be performed for
dynamic models described by polynomial or rational equations [Rau+14]. The characteristic
set of the differential ideal from the model structure can be used to define a normalized
exhaustive summary of the model, which is in essence an implicit description of its input-
output behaviour. Showing the injectivity of the exhaustive summary proves the identifiability
of the model. Later, [PADO03] developed an algorithm made available by [Bel+07] as the
DAISY algorithm. Its easiness of use makes it an interesting tool although it quickly becomes
prohibitive for large systems.

To the author’s knowledge, there has however been no application of these methods to the field of
building energy simulation. A comparative study has however been applied to civil engineering
problems by [CCS15].

Cadlibration and inference

Let us assume that the first two steps of the procedure have been completed: data have been recorded
and processed, and a model structure has been selected and checked for structural identifiability.

Model calibration is seen here as the process of training a model to reproduce some given data.
In the following, we will mostly use this term to denote the search for the optimal parameters with
which model predictions best fit observations. The expression model training describes the same
process, but implies that the main use for the trained model will be to forecast predictions beyond
the period of observation. Model calibration is a way to allow performing statistical inference, i.e.
deducing properties of underlying probability distributions behind the data generating process (the
building) and its properties, and making decisions. The term of statistical learning encompasses
data mining, inference and prediction [HTFO1].
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Ordinary least square estimation for linear regression

As mentioned above, the first criterion on which we may judge model adequacy is the residual sum
of squares (RSS) between and observation (column) vector y” = (y1,y2,...,yn) and the output of
the model Jo (X) = J(x;, 0) that was chosen to reproduce it as a function of an input matrix X and
parameter 6.

(i —9(x,0)) (2.45)

M=

RSS(6) =
1

The input matrix X = (X1,X>, ...,X,,) has the shape N x p where N is the number of data points and
p the number of input variables. Each of its columns X; can be a series of N measurements by one
sensor, or come from transformations of the original data. Each line x; = (x;1,xp, ...,xip) is a vector
of different types of measurements for the ith case.

The ordinary least square (OLS) estimator is the value of 6 that minimizes RSS:

N
6 =argmin }_ (y; — 9(x;,0))° (2.46)
i=1
The minimum of the sum of squares is found by setting the gradient to zero. There is one gradient
equation per parameter of the model:

JORSS N . 99(x;,0)
20, -2 (yi—9(x;,0)) a6, 0 (2.47)

i=1
We will mostly apply ordinary least squares estimation to linear regression models, such as energy

signature or co-heating methods. These models can be written in the following vector or matrix
forms:

P
yi=0y+ ZXij9j+£,~ (2.48)
=
y=X0+¢ (2.49)

where g ~ .#°(0,0) is a series of unobserved, uncorrelated random variables which account for
influences other than the explanatory variables x;. The residual sum of squares (Eq. 2.45) for this
type of model can be written as:

RSS(0) = (y—X0)" (y—X6) (2.50)

Solving the ordinary least-squares criterion (Eq. 2.47) then leads to a closed-form expression for
the estimated value of the unknown parameter vector 6 and its covariance matrix:

6= (X"X)"'X"y @2.51)

covd = o (X'X) " (2.52)

Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a method of estimating the parameters of a probability
distribution by maximizing a likelihood function. An example of likelihood function is given by
Eq. 2.29 as the outcome of the Kalman filter algorithm that iteratively predicts the next state of a
state-space model. A state-space model is indeed a statistical model, as the states it predicts are
defined by probability distributions, and the parameters 6 are the parameters of these probability
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distributions. The estimation of 8 can be conducted through two statistical paradigms: maximum
likelihood estimation, also referred below as the frequentist approach, and Bayesian inference (see
Sec. 2.4.3).

The frequentist approach considers that parameter estimation will asymptotically converge
towards the true values 8* as the number of observations grow [BB04; Bet18]. This means that
given a model that perfectly characterizes the system, its parameters will converge with certainty
to the correct target values 0* at a \/n rate, y/n being proportional to the width of the uncertainty
band. So in theory, the larger the dataset, the narrower the estimation interval, hence the closer to
the correct target values.

The assumption of asymptotic behaviour also means that refining the state of information will
be done from the data only. Physical expectations on the parameter values or prior information
bear no pertinent information compared to the observed data. Model calibration in a frequentist
approach consists therefore in determining the probability density of the set of parameters 6 from
the data y only: p(6|y). This measure is called the likelihood Ly(0).

Given the asymptotic behaviour of the parameter estimation, the likelihood is often considered
to have a Gaussian shape. The calibration procedure is then much simplified as it suffices the
determine the only point around which the likelihood is maximum. Variances and covariances
are then approximated thanks to the Gaussian-shape assumption. Model calibration is therefore
simplified to a simple maximization numerical problem or to a minimization problem when the
negative logarithmic likelihood is considered, which is numerically simpler to solve.

Among many existing methods, see reviews by [WP97] or [Tar05], steepest-descent methods
are proven to be numerically effective. Starting from 6y at iteration k and given a certain radius o
around 6, the idea is to find the direction within said radius that gives the largest change in the
likelihood. Finding the maximum of L therefore means finding the direction around 6 that induces
the largest growth in Ly(6). The algorithm continues until no radius however small produces any
improvement on L, which is where the maximum likelihood estimator éML is found. To avoid flat
regions upon initialisation randomly far from the optimum, it is best to minimize —logL than to
maximize L as it transforms a Gaussian-shaped objective into a nicer paraboloid shaped objective
(Mosegaard and Tarantola, 2002).

Descent methods are proven to be effective because they use the derivatives of around 6 to
find the steepest direction. The first and second derivatives may be given analytically as in the
Newton methods, or may be numerically estimated as in the quasi-Newton methods. The BFGS
algorithm, standing for Broyden, Fletcher, Goldfarb, and Shanno its discoverers, is a popular
quasi-Newton method when the derivates to the second order of the objective function L are not
known. The BFGS algorithm has in this context superlinear convergence rate, i.e. faster than a
linear convergence, which is a desirable property for finding in a reasonable number of iterations
an acceptable estimation of the optimum. The BFGS algorithm is implemented in Matlab, R and
Python. For the latter, the CTSM-R library uses a BFGS algorithm for RC models structures
estimation, as well as the pySIP library [RR19] that uses the SciPy library for its BFGS algorithm
in the optimize.minimize function.

Bayesian inference

In Bayesian estimation, the unknown parameters are treated as random variables with a certain
prior distribution p(0), which represents the prior belief before looking at the data. Then, all the
information available in the data is summarized in the likelihood function p(y;.y|0). The prior
belief and the data information are combined in the Bayes’ theorem to compute the posterior
distribution:

B p(y1n|0)p(6)

p(Blyin) = O p(y1n|0)p(0) (2.53)
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where p(y;.v) is a constant which does not need to be computed and ensures that p(0|y;.y) is a
probability density function.

When it is not possible or not computationally efficient to sample directly from the posterior
distribution, Markov Chain simulation is used to stochastically explore the typical set (Gelman et
al. (2013)). Markov chains used in Markov Chains Monte Carlo (MCMC) methods are designed so
that their stationary distribution is the posterior distribution. If the chain is long enough, the state
history of the chain provides samples from the typical set {0y, ..., Oy}

Metropolis-Hastings

Algorithm 1 Metropolis Hastings algorithm
1: forn=1...N do
2: Draw a new value from a proposal distribution g

3: 0+ g(0'16,—1)

4: Compute the marginal likelihood using a Kalman filter (for linear models):

5: (p(x1:716,y1:7) , Ly(0")) <~ KALMANFILTER(6’)

6: Accept or reject the proposal:

7: o ~U(0,1)

PG COT{C I LORE
Ly(6y-1) p(65-1)8(6’|6,-1)

9: 0, o’

10 else

11: 0, 6,4

12: end if

13: end for

The Marginal Metropolis Hastings (MMH) algorithm is part of the family of Markov Chain
Monte Carlo (MCMC) methods. It calculates a finite sequence of samples {6,,n € 1...N} approx-
imating the posterior distribution. Algorithm 1 employs a Kalman filter to compute the states
p (x1.7|6,y1.r) and likelihood L, (6) associated to each proposal for 6. If the state-space model is
non-linear, this filter can be replaced by a particle filter: this approach is known as Particle Markov
Chain Monte Carlo (PMCMC) [ADHI10].

The choice of the proposal disribution g, and a good initialisation, are critical for the perfor-
mance of the algorithm. A burn-in phase at the beginning of the Markov chain must be discarded as
it does not reflect the posterior distribution. [RG18] construct the proposal distribution by using the
gradient and Hessian of the posterior, calculated by differentiation of the Kalman filter equations.
Alternatively, the Adaptive Metropolis Hastings algorithm is used by [RRO18].

Sequential Monte Carlo

We now consider the procedure for on-line parameter estimation. The target is to construct a
sequence of posterior distributions {p(0|y1./),t € 1...T'}, one for each observation point, that will
allow us to visualize the information gained during the experiment in real time.

The SMC algorithm for parameter estimation is an adaptation of particle filtering for state
variables. The foundation of this method is the Importance Sampling paradigm as described by
[CGMO7]: simulating samples under an instrumental distribution and then approximating the target
distributions by weighting these samples using appropriately defined importance weights. The
reader is referred to [CGMO07] and [Kan+15] for a deeper explanation of SMC and its application
to parameter estimation. The method used here is inspired from the Iterated Batch Importance
Sampling algorithm [Cho02]. It is described in Fig. 2.7 and Algorithm 2.

The algorithm starts with the generation of a population of Ng particles drawn from a prior
distribution p(0). Each parameter is assigned an initial state xo and weight. At each time step
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Algorithm 2 Sequential Monte Carlo algorithm
1: Initialisation: generate a population of Ng particles, their states and weights
2: forall j € {1..Ng} do

w6 ~p(6)

& xg) ~ p(X)

5: a)é/) =1

6: end for

7: fort =1...T do

8: forall j € {1..Ny} do

9: Resampling

10: {aj,j€1..Ng} <—MULT1NOM1AL<a)t(i)1,j € 1...N9)

11: Rejuvenation by a single MMH step with proposal distribution .4 (/ft,,l , i,,l)
12: <9(1> x(()Jl) 1,LI( )1> <—MMH<9I( 1),x(()t)1,y0, 1)

13: Propagate and weight

14: (x,(’),L( )> < KALMANFILTER (Xt( 7 eV ),y,)

15: where Lt( i) = p (yt|xt71,9,(] )) is the incremential likelihood.
17: end for

18: Normalise weights

19: o )/ Z a)t 1
20: Calculate Welghted mean and covariance of parameters
21 = ij\_’i 1 wt(f)net(/)

. T N NT
22: = levi] wt(j) (et(j) - Nt) <9t(j) - Ivlt)
23: end for
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Figure 2.7: Principle of the SMC algorithm

t, a Kalman filter computes the states X(] ) and likelihood Lt(j ) associated to each particle Bt(j ) It
the state-space model is non-linear, this filter can be replaced by a particle filter: this approach is
known as the SMC? algorithm [CJP13]. By this operation, the population of particles is updated
so that at each time 7 they are a properly weighted sample from p (0]y;,) [CIJP13]. After several
time steps, there is a risk that only a few of the initial Ny particles are significantly more likely than
the others and concentrate the majority of the total weight: a resampling step is then performed
in order to generate a new population of particles from the most influencial ones, and a MCMC
rejuvenation step then restore the diversity of particles [Murl3].

Resampling does not occur every time a new observation becomes available, but only when
required: this is measured by the effective number of particles that significantly contribute to the
total weight of all particles [Murl3]. This operation decreases the number of unique particles,
hence the subsequent rejuvenation step that restores diversity. The choice of .4 (ﬂt,i,) as the
proposal distribution for the MCMC rejuvenation step was proposed by [Cho02] and ensures a
reasonable acceptance ratio while leaving p (6|y;,,) invariant. The rejuvenation step makes the
algorithm quite computationally expensive, since the total likelihood of all particles p (y;|6) must
be recalculated every time resampling occurs. This problem is mitigated by the fact that particles
can be resampled independently, making this effort parallelisable.

Hamiltonian Monte Carlo

The hamiltonian Monte Carlo algorithm supresses the random walk behavior by borrowing an idea
from physics. Metaphorically, the vector of parameters represents the position, q, of a frictionless
particle which follows a physical path determined by the curvature of the posterior distribution. In
order to mimic this behavior, the algorithm introduces auxiliary momentum parameters, p, to the



2.5

36 Chapter 2. Calibration of heat fransfer models and Bayesian inference

parameters of the posterior distribution, q, with the joint probability distribution

7(q,p) = 7(plq)7(q) (2.54)
= exp [logz(plq) +logz(q)]
= exp[—K(p,q) —V(q)]
= exp[—H(p,q)]
where H(p,q) = K(p,q) + V(q) is the Hamiltonian function, K(p,q) the kinetic energy and V (q)
the potential energy. The value of the Hamiltonian represents the energy of the system (Betancourt

2017a).
A new state is generated by first sampling from the conditional distribution over the momentum:

p~ 7(plq) (2.55)
and then simulating the Hamiltonian dynamics for some time, ¢, with the Hamilton’s equations

dg  0H 0K

&~ = 9p (2.56)

dp  OH 9K 9V

@~ 94" 34 39 (2.57)
(2.58)

Hamilton’s equations generate trajectories which conserve the value of the Hamiltonian, which
means that every Hamiltonian trajectory is confined to an energy level set [Bet17]. The frictionless
particle can move rapidly and even turn corners in the parameter space to preserve the energy of
the trajectory [Gel+13]. Furthermore, the gradient of the logarithm of the posterior distribution,
dv/dq, guides the Markov chain along regions of high probability mass which provides an effi-
cient exploration of the typical set. Unfortunately, it is seldom possible to generate Hamiltonian
trajectories analytically. and the Hamilton’s equations must instead be integrated numerically. This
is possible via the leapfrog integrator [Rad12]

Validation and diagnosis

R) The present section is part of the article [Rou18] written by the author.

Let us suppose that the user has gathered measurement data z = (u,y), chosen a numerical
model and its parameterisation 6 to depict the observed phenomena, checked for theoretical
identifiability, and run a parameter estimation algorithm in either the least-squares or maximum
likelihood framework, to obtain an estimate 6 and its covariance matrix cov(8). Let us now address
how the results of an inverse problem solved with one model type and one data set can be validated.

Once the parameter estimation is complete, several steps should be followed to make sure the
results are usable. These steps are listed by [Mad16] for both model selection and validation, and
fall within three categories.

¢ Tests on the parameter estimates. This is to make sure that the chosen model structure

is appropriate and does not include redundant parameters. It is especially important in
characterisation studies, where the parameter values are the sole target of the identification.
Practical identifiability is a measure of the information truly gained by the model from the
experiment, and helps identify how much each parameter has been updated by observations.
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Figure 2.8: Validation steps

* Tests on the model output and residuals. This is to make sure that the model complexity
is sufficient to replicate the observations, and can be trusted to simulate the reality with
different initial and boundary conditions. It is especially important if the target of the system
identification study is to establish a predictive model.

* Out-of-sample validation of the predicted output using a different dataset than the one used
for training.

In addition to checking model validity, these steps allow establishing a diagnosis of which improve-
ments can be brought to the model.

Parameter confidence regions

In this part, the analysis concerns mostly the covariance matrix of the estimate cov(8), which can
for instance be calculated by Eq. 2.52 in the least-squares estimation. The covariance matrix is
related to the correlation matrix Ry by:

cov(8) = osR, 0, (2.59)

where o i§ a diagonal square matrix containing the standard deviation G, of each individual
parameter 6;. The matrices Ry and o are the basis for testing for superfluous parameters in the
model.

A preliminary sensitivity analysis performed before parameter estimation does not guarantee
that the confidence intervals and regions of estimates are finite. Such an analysis is performed either
globally (for Monte-Carlo and sampling-based methods) or locally near an initial guess value of the
parameters. In either case, its outcome cannot precisely depict the uncertainty ranges of parameters
near the estimate 6 obtained by the identification.

The first criterion for validating parameter estimates is their individual significance. A low
influence of a parameter on the model output results in low values of the sensitivity matrix
S = (0 —logLy(t;,6;)/96;) or information matrix F = S”S, which translates into high values in
the diagonal of the covariance matrix (Eq. 2.59). It is important to note that the calculation of the
covariance matrix depends on the data: it only measures whether parameters are significant in the
conditions of the experiment. The marginal significance of a parameter is evaluated by comparing
its absolute value 6; with its standard deviation 0O ;- It can be done by a simple comparison of both,
or with a t-test for statistical significance: [Lju98; Mad(07] use the value of the standard deviation
0 ; to test the hypothesis H; that 6; is statistically significant, against the hypothesis Hy that it is
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not. Alternatively, the confidence interval of a single parameter can be approached by the value of
its diagonal term in the covariance matrix.

The second criterion for validating parameters is the lack of serious correlations between
estimates. The correlation matrix Rg has coefficients between -1 and 1, indicating pairwise coupled
effects of parameters on the model output. A high correlation between two parameter estimates
means that the model structure should be revised or that one of the parameters should be fixed
to an assumed value. A statistically insignificant parameter may disturb the estimation of more
important parameters it interacts with: it is generally stated that if a parameter is found to be either
insignificant or strongly correlated with another, it should be removed from the model and the
estimation should be conducted once more [Mad16; PG03].

Perhaps the most informative way to assess the practical identifiability of a model is the display
of confidence regions and intervals for its parameter estimates. A likelihood-based method of
setting these regions is described by [ME95; Rau+09] as the likelihood ratio test and is briefly
summarised here. Suppose a model of p parameters 0 which exhibit some interaction. We want
to draw the confidence regions for a subset 6, of the parameters of length p;, with the remaining
parameters denoted 6,, in order to see if this region is finite and the model identifiable. If the
maximum likelihood estimator 6y, has been identified, the likelihood ratio function is defined by:

Ly(el’%)] (2.60)

Ly(6)
A property of the likelihood ratio test is that —21n[R(8;)] asymptotically follows a x? distribution

with p; degrees of freedom [ME95]. An approximate 100(1 — ot)% likelihood-based confidence
region for O is the set of all values such that:

R(Gl) = maxg, [

—2In[R(61)] < AT g, (2.61)
where A%f a,p, 18 the I — o quantile of the x? distribution with p; degrees of freedom. Note that

this test can be performed after a deterministic parameter estimation, by using the sum of squared
residuals instead of the likelihood function:

L(0)| _ 1 2o 2
—21n Ly(é)]_dz(z(e) 2(6)) (2.62)

From this theory of asymptotic likelihood-based confidence regions, [Rau+09] proposed the
definition of the profile likelihood function ng(O;) of a single parameter 6; as an a posteriori way
to check its structural and practical identifiability. This function is defined as the likelihood ratio in
the particular case of a single explanatory parameter:

Lywi,e,-)]

A (2.63)
L,(6)

21 (6;) = max; [
As written by [Rau+09]: structurally non-identifiable parameters are characterized by a flat profile
likelihood. The profile likelihood of a practically non-identifiable parameter has a minimum, but
is not excessing a threshold A;_, for increasing and/or decreasing values of 6; (here, Aj_g is
the 1 — & quantile of the x? distribution with one degree of freedom). As an example, the 95%
confidence interval of a single parameter 6; is the interval of values so that x; (6;) does not exceed
the threshold A; _g59, = 3.84.
A comprehensive application of this theory in a building physics application was proposed
recently by [DR17] to measure the identifiability of parameters of several RC models describing
the thermal characteristics of a building component. Results reveal large differences in the practical



25.2

2.5 Validation and diagnosis 39

identifiability of models between winter and summer conditions: this underlines the importance of
the richness of excitation data on the results of an inverse problem, independently from the model
structure. Two-dimensional confidence regions can also be shown by applying Eq. 2.61 to pairwise
parameter combinations: these regions can be plotted in the form of a correlation matrix enriched
with precise confidence thresholds [Rau+09].

Residual analysis

The most straightforward way to check for the validity of a calibrated model is a visual comparison
between measurements and simulations that takes into account both the measurements noise and
the model input data uncertainties. The agreement between model and reality is stated to be good
when a significant overlapping is observed between simulations and measurements uncertainty
bands [PGO3]. Note that this statement also holds for a white-box model where parameters are not
the outcome of an inverse problem: the validation of such a model should meet these standards as
well.

However, a more systematic analysis of the residuals is often preferable. Statistical tools
to compare measurements and simulations can be used to assess the validity of the model after
calibration. The following steps were recommended for all model validation procedures during the
PASSYS project by [PMMI1]. Let us focus on the definition of the residuals calculated from the
calculation of any of the estimates 6 defined above:

A

r(t) = y(1) = 3(z,0) (2.64)

Residuals from an ideal unbiased model should behave like white noise, i.e. a stochastic process that
approaches a stationary normal distribution with zero mean. In time series analysis, the stationarity
of this stochastic process can be checked if its mean and variance do not vary over different time
periods. Another method is to use the normalized autocorrelation function (ACF) of residuals:

ACF,(t) = S E[(r(e) — ) (r(t + 1) — )] (2.65)

I3

where 1, and 6 are the mean and variance of the process (the residual). The ACF measures the
average correlation between points separated by a lag 7 within the time series. The ACF of a true
white noise signal is zero for all lags other than zero. The whiteness test on the ACF is the first
statistical test in residual analysis [PMMO91]. The second test is the independence test described
below.

The criterion of white noise residuals is very difficult to meet in practice [KSS13] as all models
include hypotheses and approximations in addition to measurement uncertainty. Furthermore,
numerically high values of the ACF do not precisely point out the source of model inadequacies.
Enter the cross-correlation function (CCF):

CCF,u(t) = ——E[(r(t) — ) (u(t +7) — )] (2.66)

0,0y

The CCF checks is the residuals are correlated with any of the input processes u#. Should a significant
cross-correlation with one of the inputs be found, then it is likely that this input is improperly
accounted for in the model [Mad(07]. Ideally, a correct model structure should not yield any
cross-correlation between residual and input signals. Statistical tests to meet the independence
criterion are described by [PMMO91].

A strong residual ACF does not necessarily imply that an input is being overlooked. An example
of model which checks the independence test (CCF) but fails the whiteness test (ACF) is shown by
[KSS13]. The satisfying low values of the CCF suggest than no input is missing in the model. By
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adding an error model to the model structure, the authors then saw the ACF fit within a reasonable
bandwidth. According to [Lju98], the ACF obtained from a model missing an error model is less
likely to meet the whiteness test. Other examples of residual analysis for model validation include:
* [JMAO8] apply residual analysis to the validation of different ARX and ARMAX models in
a numerical study: these models include error models.
* [RDS14] identify reduced-order models of buildings on reference simulations from a detailed
physical model. The reduced-order models are described by stochastic differential equations.
The authors analyse the cumulated periodograms (this is equivalent to analysing the ACF) to
pick the necessary complexity of reduced models.
* [JK17] draw ACF and CCF profiles after estimation in a deterministic agent-based framework
and found relatively high values for these functions.
The overall conclusion is that deterministic grey-box modelling is unlikely to meet the standards
for the whiteness test of residuals. In a deterministic context, a good overlap between confidence
regions of predictions and observations is often a sufficient criterion for judging that a model
structure is appropriate.

Cross-validation

The result of an inverse problem is the set of parameters 6 with which a specific model y offers
the closest fit to the training data. The goal of system identification is however to build a model
which accurately predicts the outcome of new input conditions. The generalization performance
of a model relates to its prediction capability on independent test data [HTFO1]. Estimating this
prediction error is the first step towards the selection of the appropriate model complexity to
represent the reality. A complex model will make more use of the training data than a simple model:
its average training error will be lower, but the covariance of the parameter estimates cov(é) will
be higher, hence so will the variance of output predictions over the test dataset. There is a model
complexity threshold over which decreasing the training error means increasing the generalization
error: such a model is overfitted and has a poor prediction performance.

Expected prediction errors E [(y - )?(u))z} can be decomposed into two main components:

the squared bias and the variance [HTFO1]. As a reminder, the hypothesis of additive Gaussian
measurement noise still holds: y(r) = y*(¢) + €(¢) with € ~ .47(0,0).

E[6=3)] = (EB@] -y +E (5 - EFW)])’] +0> 2.67)
[ ——

Bias®

Expected prediction error Variance

The squared bias is the deviation between the average estimation E [§(u)] and the real, noise-free
value of the output y*. This term should be equal to zero under the hypothesis of an unbiased
model y*(¢) = §(¢,0"). This hypothesis is however very optimistic in practice and requires a model
with a large number of degrees of freedom (parameters). The variance is the expected deviation of
the prediction y(u) around its mean. It can be evaluated by propagating the parameter uncertainty
cov() into an output uncertainty. The last term is an irreducible error due to the measurement
noise. Fig. 2.9 illustrates the bias-variance tradeoff in the search of the lowest prediction error.
Evaluating the exact prediction error requires a separate dataset from the one used for training
purposes. Cross-validation is a convenient way to assess the generalization ability of a model by
splitting the original dataset in several samples. The most intuitive approach is the holdout method
which splits the original data in two sets (Fig. 2.10(a): a training set used to fit the model (typically
two thirds of the original data) and a test set for its validation. Alternatively, k-fold cross-validation
(Fig. 2.10(b)) splits the original sample into k subsamples. k — 1 samples are used as training data
while the remaining sample is used as validation data. The process is then repeated k times by using
each subsample once for validation. This method can give estimates of the variability of the true
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Figure 2.9: Bias-variance trade off
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Figure 2.10: Splitting data for cross-validation

estimation error. In a data-rich situation, the best approach is to split the dataset into three parts
[HTFO1] as shown on Fig. 2.10(c): a training set used to fit the models; a validation set used to
estimate prediction error for model selection; a test set to assess the generalization error of the

selected model.
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(3. Numerical benchmark

R) This chapter summarises the main parts of the Ph.D. thesis of Sarah Juricic.

Numerical model assessment methodology for physical interpretability

In the perspective of using stochastic RC models to infer thermal performance estimation of a
building from nonintrusive measurements, it would be desirable to assess the extent to which RC
models are physically interpretable. In literature, interpretability of a model is done case by case on
the basis of expert knowledge of the tested building, such as in [BR14; CM18] or on a numerical
simulated building energy model as in [DR17; Sen+20]. Extrapolating the validity of the models
to other test cases is risky, all the more so as the data used in non intrusive measurements poorly
informative and possibly biased. In addition, exploiting actual on-site measurements brings other
issues which make inference of interpretability tricky: effect of initial conditions and thermal
states of the building, including thermal inertia, duration possibly not as long as necessary, limited
measurements although necessary for better knowledge of the building behaviour.
This section proposes therefore a numerical model assessment framework aiming at:
* creating a realistic building simulation environment to synthetically generate datasets for
models to be trained,
» proposing an accurate target value of thermal performance of the building envelope and its
components,
* assessing the physical interpretability of any model calibrated by a robust indicator,
* comparing in a common framework the interpretability of different models,
* providing the possibility to assess the interpretability of a model in variable configurations,
as to verify repeatability of a calibration and to a certain extent generalisation of the results.
Section 3.1.1 first exposes the principles of the framework for model assessment while detailing
how the proposed framework alleviates the issues attached to the realism of numerical simulations.
Section 3.1.1 also details the case study simulated in the framework and in the end used to
generate synthetic data. Section 3.1.2 describes how to assess a model with respect to the physical
interpretability of its thermal performance estimation.
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Figure 3.1: Principle of a numerical framework for model assessment: a numerical building energy
comprehensive model generates synthetic data that serves as training data for an RC stochastic
model. The calibration outcome is compared to the theoretical properties of the building of the
numerical model.

A numerical assessment framework for physical interpretability

The objective of a numerical framework for model assessment is to act as a sort of test-bed: the
framework should recreate a non intrusive experiment as close to reality as possible to provide
realistic synthetic datasets that serve as training data for the model under study.

To be of use, benchmark studies should avoid common pitfalls that prevent the generalization
of the results [Kre19]. The recommendations in [Kre19] are concededly intended for optimization
algorithms but are still valid for the present application, with in particular the following pitfalls:

* relying on an unrealistic setup: ideal measurements (no systematic error, no measurement

error),

* use the same model for data generation as for calibration (cf. the "inverse crime" from

[KSO7D),
* not generalisable to other building configurations and typologies.

Proposition for a numerical assessment framework

The proposed model assessment framework is shown in Figure 3.1. A comprehensive highly
detailed building is modelled in the EnergyPlus software (see Section 3.1.1). It is defined with
a number of physical properties (scalars), the quantity of interest, that the model under study
estimates. From a given weather dataset, EnergyPlus performs a dynamic thermal simulation from
which are extracted the output necessary to the calibration of the model under study, stochastic RC
models in the present application.

Model calibration delivers either posterior distributions of the parameters (Bayesian approach)
or parameter estimations with Gaussian error assumption (frequentist approach). Either way, the
results can then be compared to the physical properties of the comprehensive model from where
interpretability can be assessed. An assessment framework is detailed in section 3.1.2.

The basic procedure described in Figure 3.1 assesses the interpretability of one model, but only
on the basis of synthetic data from a single building energy model. Let us here underline that the
model "tested" should actually be the model that best fits the generated data in the sense of the
validation workflow in section 2.5. Indeed, it makes no sense to calibrate and assess a model that
would not pass the validation workflow. Instead, for a given synthetic dataset, an appropriate model
is selected and then assessed. This does in any case not provide generalisable outcome as it remains
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Figure 3.2: Building energy model simulations in variable conditions: the overall framework
assesses to what extent a stochastic RC model is robust and coherent to variations of the numerical
building energy model. Variable simulation conditions can be weather related for repeatability
assessment (as illustrated here) or can be envelope related for physical meaning of the parameters
of the RC model.

too case-specific.

The assessment therefore rather relies on a larger framework, where boundary conditions or
physical properties of the envelope vary. The idea is illustrated in Figure 3.2. Each stochastic RC
model is assessed for its physical interpretability from a coherent set of hundreds of datasets. The
variations focus then either on the weather conditions or on the building envelope. The former
allows a controlled repeatability assessment and the latter assesses in particular the individual
physical interpretability of the model parameters. The model assessment framework has therefore
better generalisation ability.

A comprehensive building energy model as reference

The model assessment framework relies on a comprehensive building energy computer model, from
now on called reference model. The reference model needs to be as detailed as possible in order to
depict realistic thermal dynamics.

Relying on a computer model is concededly arguable: it introduces itself a characterization
error as it cannot produce data as realistic as actual data, because of discretization of the heat
equation and simplifications of some phenomena. The validity of this work relies on the hypothesis
that the reference model in EnergyPlus is yet detailed enough. It is indeed assumed that although
not perfectly realistic, a reference model can be sufficiently detailed to study the aggregation of
physical phenomena in RC models and to uncover biased results. Additionally, it does not constitute
an "inverse crime", to quote [KS07], as the reference model is more detailed in its description of
the building physics than the RC models tested.

The reference model is simulated with the simulation software EnergyPlus. The advantage
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of using such software is that it has been proven to be reliable for accurate thermal simulation
[Cra+01; NRE16] and it has already been used for the purpose of generating synthetic data in
scientific literature including recently and among others [And+17; Fou+13; GRM17; LHS19]. In
addition, as mentioned by [Tia+18], the EnergyPlus software has the advantage of using as input
file a ASCII file, easily edited with many programming languages.

Various choices can be made for the reference model to account for heat and mass transfer
modelling, solar irradiation, etc. The choices made for the reference model are therefore driven
by the purpose of this study, i.e. thermal behaviour, but also on the need of reasonable simulation
duration as hundreds of simulations are planned for model assessment.

In an effort to use a realistic case study, a multi-zone building energy model inspired by an
actual building design has been chosen. The case study has a single storey. With two storeys or
more, the issue of temperature discrepancy across the building would have been inevitable. A
one-storey building will be less significantly prone to temperature stratification than higher case
studies.

Bathroom

Living room

Figure 3.3: Floor plan of the case study used as multi-zone reference model in the application of
the model assessment framework

The reference model is a multi-zone building of a one-storey house. Its floor plan is shown in
Figure 3.3, where each room is modelled as an independent zone in EnergyPlus. It has unheated
crawlspace and attics. The heated space is about 100 m? and is equipped with convective heaters.
The composition of the envelope and further details on the hypotheses for systems and ventilation
are detailed in [juricic].

Model assessment and comparison : a quantitative indicator

The last step of model assessment consists in assessing how close the estimated thermal performance
of the building is to the theoretical target value. As the theoretical thermal performance is accurately
known, it is possible to quantify the closeness of the estimation to the target value.

In [Sen+20] for example, such comparison is made with error € to the target value defined as
in equation 3.1 and with a conditional indicator, whether or not the target value is included in the
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confidence intervals (with a yes or no answer).

€= (Restimated _Rtarget)/Rmrget x 100 (%) (31)

Applied in preliminary works [Jur+18; Jur+19], such indicators proved to be limited for model
comparison at large scale. Indeed, it is rather inconvenient that the assessment is made by two
different values, one of which is not even scalar. Furthermore, it does not properly reflect the
desirability of the results, because it compares a single maximum likelihood estimator to the target
value, without reflecting on acceptable margins and uncertainty.

Instead, an alternative quantitative indicator is proposed in this work as an attempt to better
reflect on the desirability of both the results’ accuracy and uncertainty. It is inspired by the Bayesian
approach, where parameter estimations are continuous probability densities. It can be extended
to the frequentist approach with the assumption of Gaussian distribution. Let us remind that the
mode is the most probable value and that the credible set is the Bayesian conceptual version of the
frequentist confidence intervals.

Accuracy of the estimation to the target value can then be categorized in the 4 following cases,
illustrated in Figure 3.4:

* (1) accurate mode and narrow credible set : the target value falls in the 89 % credible set (or

95 % CS), the mode is close to the target value. This category shows high accuracy and low
uncertainties of the estimation. Estimations in this category are the most satisfactory results;

* (2) accurate mode and large credible set : the target value falls in the credible set, but the
uncertainties are large ;

* (3) inaccurate mode and large credible set : the target value falls close to the tails of the
credible set, meaning that the mode is misleadingly far from the target value but that at least
the uncertainties are representative of the informativeness of the data and the model ;

* (4) inaccurate mode and narrow credible set : the least satisfactory result. The model and/or
the data give bias to the parameter estimation and the target value does not fall in the credible
set, which will mislead the expert examining the data.

To make model assessment and comparison easier, these 4 categories need then to be translated
into a metric, which needs to be high for category (1), moderate for categories (2, 3) and low for
category (4).

Intuitively, the probability mass around the target value fits this objective. For a discrete
probability function, the probability mass at the target value exactly would suffice, i.e. for X : § — R
a discrete random variable, the probability at the target value x is:

PX=x)=P{seS:X(s)=x}) (3.2)

This work deals with continuous probability density functions and probability density of a
continuous variable at the target value is exactly 0 by definition. Instead, the probability density of
the volume around the target value is an option, i.e. the probability of random variable X of density
f to be between limits a and b:

b
Pla<X<b)= / f(x)dx (3.3)

Figure 3.4 illustrates how a probability density is equivalent to calculating the integral of the
posterior density function between a and b, i.e. the area under the curve between a and b being on
either sides of the target value. The values taken by this metric are bound between 0 and 1, meeting
then the criteria stated earlier. For a category (1) type of posterior distribution, the metric is close to
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Figure 3.4: Illustration of 4 categories of posterior distributions (synthetic data). Limits @ and b
defined as for example target += 10 % create a region of interest (in grey) around the target value
(dotted black line). The probability of each density to be within these limits (hatched areas) defines
a quantitative indicator that takes values between 0 and 1.
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1, as in the illustration from Figure 3.4 P(a < X < b) = 0.96. For categories (2) and (3), the metric
will show values around 0.5. Category (4) results are very unlikely and the metric tends to 0.

Another argument in favour of the probability density on ]a, b] is that the metric is standardized
between 0 and 1 whatever the order of magnitude of the target value, therefore facilitating model
assessment on any of its parameters. The interval |a, b] is perfectly arbitrary. We propose to take as
reference a 5 % acceptability error. The assessment metric becomes:

b=target+5%
Pla<X <b)= / F(x)dx (3.4)

a=target—5%

Repeatability of parameter estimation in variable weather conditions

The accuracy of thermal performance estimation is function of the information carried in the dataset:
information carried in the input variables (heating, outdoor weather conditions) and the system
response, indoor temperature. The dynamic nature of the indoor temperature is therefore driven by
the heating and the outdoor weather conditions.

In a non intrusive experiment, the heating input is itself conditioned by the indoor temperature
set point which remains user-friendly as to be non intrusive with respect to possible occupancy. The
heating power is therefore not as informative as in a controlled experiment. The dynamic provided
by the outdoor conditions probably play a larger role in the dynamics of indoor temperatures than
in controlled experiments. As the effect of weather conditions grows larger, it is possible that
the calibration results depend on the actual conditions during the experiment. Poorly informative
heating input raises therefore the issue of weather dependency of the results. If then the results are
dependent on the outdoor conditions, results are not repeatable.

Weather conditions influence: state of the art

Previous work on thermal performance estimation of the envelope in a non intrusive framework has
focused on the study of a single wall performance or on the entire envelope of a building. [RI18]
show how solar irradiation significantly defers stability and convergence of the estimation of the
conductive thermal resistance of a wall R, i.e. the inverse of the HTC of the wall, using heat flow
meters following the ISO 9869 standard [ISO14]. The authors suggest using flow meters on both
sides of the walls to secure a robust and faster estimation of R...

[PGT18] propose an innovative method to exploit non intrusive data from heat flux and tem-
perature meters to determine dynamic thermal characteristics of a wall. The use of 12,5 days data,
although not justified, met acceptable accuracy on the results.

[GCG18] precisely study the duration of a heat flux meter test for estimating the U-value, again
following the [ISO14], and compares its stability to the criteria given by the standard, in which is
given that three conditions must be met simultaneously to end the test [GCG18]:

* the first condition is that the test must last 72 h or longer,

* the second condition is that the U-value obtained at the end of the test must not deviate more

than 5 % from the value obtained 24 h earlier,

* the third condition is that the U-value obtained from the first N days and from the last N days

must not deviate more than 5 %, with N = 2/3 - total duration.

There seems to be no limitation to applying the last two conditions to other calibration tech-
niques than the methods defined in the ISO, although [GBE18] mention that it has never been seen
in literature and that it might be too conservative.

In an application of RC models on heat flux measurements, [GE18] and [GBE18] introduce the
idea of stabilisation of the estimation : from short datasets, the estimates suffer from the prominent
noise in the data. As the dataset grows, the values stabilise towards a final value. Applying the
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criteria of the ISO 9869-1:2014 standard, they found that up to 10 days were necessary to reach
stabilisation in autumn and winter season whereas longer periods were necessary in warmer seasons.
The minimum length tested was 3 days, as demanded by the ISO standard, but authors found that
shorter datasets sufficed in some cases with the use of a dynamic model.

At wall scale again, [RGM19] compared a dynamic model calibrated by Bayesian inference to
the average and dynamic methods described in the ISO 9869-1:2014 standard and found that the
temperature difference was more determinant than the length of the dataset, thus uncovering the
major role played by uncontrolled boundary conditions.

[RDC99] point out the issue of data informativeness in a study where non intrusive measure-
ments are used to assess building overall heat loss and overall ventilation rate of a large commercial
building using a steady-state equation. They found that daily averaged data over a year combined
with a multi-step regression technique, where multiple regressions are performed one after the
other to estimate parameters one by one, achieved the best results. Parameter identification over
a single season was less accurate: in winter and summer seasons, the combined variability of the
outdoor temperature and the relative humidity was narrower than during the spring season. Large
variability of these two weather variables yielded less correlated parameters and more accurate
overall parameter identification.

[DR17] applied dynamic grey box modelling in a non intrusive framework to assess the thermal
performance of a single wall based on heat flux measurements. The authors used two different data
subsets of 10 days in winter (steady indoor temperature assumed at 20 °C) and 9 days in summer
(free floating indoor and outdoor temperatures). They found that winter conditions with constant
indoor temperatures were not appropriate to identify the parameters of interest, considering that
temperatures are the main variables of the differential equations used for the exploitation of the data.
Summer free floating conditions were then found to be more informative and led to identifiable
and interpretable parameters. Let us remind here that identifiability relates to the unicity of the
parameter estimation and interpretability to the ability to give the estimation a physical meaning.
Both may be confounded if the model characterizes perfectly the system.

More recently, [Sen+19] studied the physical interpretation of ARX models, aiming for the
estimation of the HTC via on-board monitoring, i.e. in a non intrusive measurement framework.
Four different indoor temperature scenarii were tested through 20 days of synthetic data twice: once
for training and once for validation. The building modelled in TRNSYS is a single-zone opaque
box and the study focused on the estimation of the HTC in case of heat losses to the ground. There
is no mention of the influence of the length of the dataset on the results, but in order to fit at best the
available data, a model selection process is applied to check that the residuals can be considered as
white noise and that the parameters of the ARX models are significant through a marginal t-test.

The reference model undergoes variable weather conditions

Using a numerical building energy model presents the advantage of knowing the exact thermal
performance of the case study. The simulation environment allows to perform simulations under
any weather conditions. This section presents different ways to consider such variations and why
in the end stochastically generated weather data has been chosen. The section also describes the
dataset selection and details on the calibration of the RC model.

Adaptations of the reference model methodology

The case study described in section 3.1 is used to produce synthetic datasets. Its thermal properties
in this specific application are described in Table 3.1. To focus on the study of weather variability
and avoid effect of heat losses through unheated adjacent spaces (attics and crawl space), the
insulation thicknesses of horizontal walls has been set at 30 cm, which basically ensures very low
heat transfers. At the same time, vertical walls have medium insulation and the air change rate is
quite large.
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Vertical insulation thickness 10 cm
Attic insulation thickness 30 cm
Ground floor slab insulation thickness | 30 cm
Air change rate 1.0h™!

Table 3.1: Thermal characteristics of the numerical building energy model used in this application

This case study configuration yields an overall theoretical thermal resistance R, = 5.19 X
10~3 K/W. This theoretical value is later on called target value R;,, in opposition to the estimated
values of the overall thermal resistance R, (without *), estimated from the "collected" data.

In essence, as illustrated by Figure 3.5(a), the case study is simulated with N different weather
conditions datasets. As a result, there are N synthetic simulation outputs, from which indoor
temperature and heating power are saved. Each synthetic dataset serves as training data for a
stochastic RC model. Finally, an overall thermal resistance can be inferred from the estimated
parameters of the RC model.

To explore adequate experiment duration under variable weather, each synthetic dataset gives
data subsets of growing length, each serving as training data. As shown in Figure 3.5(b), starting at
date 2, subsets of 2, 3, 5, 8, 11, 15 and 25 days are considered for model training.

Weather variability in a numerical methodology

In application of the aforementioned methodology, the idea is to use various weather datasets to
study how these boundary conditions influence the stability of overall heat transfers estimation.
This section first shows how simulations with actual weather data were insufficient in deeply
understanding the relationship between weather and R, estimation and then presents a set of 2000
stochastically generated weather files, built for sensitivity analysis. This set will prove to be an
informative alternative to actual weather data.

This study proposes to use synthetic weather data from which a variance based sensitivity
analysis is possible [GMW17]. A total of 6 weather variables are stochastically generated to
be representative of usual weather conditions in Geneva in winter, following the methodology
described in [Ans+15; GMW17], as a time series constructed by a combination of statistical and
deterministic features. The charateristics are extracted on the basis of representative weather data :
the TMY weather file [Per+14]. The TMY file, standing for Typical Meteorological Years, is built
by concatenation of typical months. Each month is chosen from 30 years actual data: each monthly
dataset is weighted as a sum of 13 Finkelstein-Schafer statistics [FS71] from the temperature, wind
and solar radiation data. In the end, the chosen monthly dataset is the one that shows statistics closest
to mean, median of the 30 years data distribution, after having discarded years with exceptionally
long periods of consecutive warm, cold or low radiation days. The stochastic generation [GMW17]
contains then as much variability as in the TMY file : if the TMY has for one particular variable a
lower variability than the rest of the 30 years actual weather data, it will reflect in the synthetic data.

From the TMY file, [GMW17] select 6 weather variables to stochastically generate 2000
weather files, the rest of the variables are left unchanged. The generated variables are exterior
dry bulb temperature, relative humidity, direct normal solar irradiation, horizontal diffuse solar
irradiation, wind speed and wind direction.

Finally, the weather data is generated as to calculate sensitivity indices through a Sobol variance
method able to cope with groups of time-dependent inputs, such as here time dependency of each
weather variable. Sensitivity indices by groups estimate the effect of the entire time series of the
meteorological variable under study. The sensitivity indices are therefore scalars even when the
variables are time series. The indices are calculated from two sets of 1000 samples, each sample
of the first 1000 being defined by the characteristic features extracted from the TMY file of each
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Figure 3.6: Stochastically generated weather data: example of the outdoor temperature profiles in
January. The stochastic data varies between —10°C and +13°C, as usual in January in Geneva
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Figure 3.7: Comparison of the stochastic outdoor temperature profiles with actually measured
temperatures: stochastic data seems rather realistic

weather variable, the second 1000 samples being a rearrangement of the first.

In this study, the output of interest for the sensitivity analysis is the R,, estimation and in
particular whether the weather conditions lead to increased or decreased estimates. The variability
of the R,, estimations with respect to weather variability is expected to become negligible as the
data becomes more informative with longer datasets. To understand more in depth how each
weather variable influences the output, partial variance and sensitivity indices are calculated.

In order to check the representativeness of the generated weather data, Figure 3.8 compares
the synthetic data to the actual data from Geneva. The figure shows the empirical cumulative
distributions of the 6 weather variables for the month of January of the actual weather data in black
and in orange the data used to generate the synthetic data. The grey areas represent the 50 %, 75 %
and 95 % quantiles of the synthetic weather data.

Synthetic outdoor dry bulb temperatures seem to be representative of the actual measured
temperatures. Synthetic wind direction is in good agreement with actual measurements as well.

Synthetic relative humidity seems to be lower than some of the actual measurements. The
synthetic diffuse radiation however seems slightly overestimated, as does the wind speed. This is
due to the fact that the 7MY weather dataset has indeed higher wind speed than other years: in
Figure 3.8 the orange line representing the TMY file is indeed significantly lower than the black
lines representing 10 years of actual weather data.

The generated direct normal radiation data does not cover a range as wide as the actual data:
some of the real data may have much higher or lower direct radiation. This might have an impact
on the following results.

Finally, considering that the generated weather data concerns January only, all subsets to be
submitted to model training should begin as early in the month as possible. Datasets will thereby
be less biased by accumulated thermal inertia as they would have undergone similar weather in
December. At the same time, there is small discontinuity in the weather data between December
31% and January 1%. All data subsets start therefore on January 2"¢.
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3.2.3 Decrease in variability of R., estimation with experiment duration
Variability with a 2-days model training
For each of the 2000 data sets and for each subset, the stochastic RC model 7,,7; R,R; A,, is
calibrated. In each case, R, is inferred as the sum of the resistive parameters estimations. Figure
3.9 shows on the left hand side 50 randomly picked R,, maximum likelihood (ML) estimations
with their confidence interval.

Looking at these individual results, there are three cases to distinguish:

* the R, estimation is close to the target R;, value: the estimation is accurate and the credible
interval includes the target R,,. This case is the most desirable case;

* the R4 estimation is far from the target Ry, value but the credible interval includes the target
R;, : the estimation is not accurate but the credible interval relates to this inaccuracy which
keeps the result trustworthy;

* the R, estimation is far from the target R, value and the credible interval does not include
the target R, : not only is the result inaccurate but also give a false sense of confidence on
an inaccurate result.

The latter case is the most sensitive one. It is therefore paramount to understand under what
conditions over- or under- estimation occur. In order to discriminate these unwanted estimations
from the others, an interpretability indicator is calculated, under the frequentist gaussian hypothesis.
This indicator, defined earlier in the previous chapter (see 3.1.2), represents the area under the bell
curve that is £5 % of the target R;,. The interpretability indicator takes values between 0 and 1.
For example, the case (c) with strong error on the estimation has an interpretability indicator close
to zero.

On the right hand side, Figure 3.9 displays the boxplot af all R,, ML-estimations showing a
wide variability: the median of the 2000 estimations falls at 5.36 K/kW with a standard deviation
of 0.35 K/kW (5" quantile 4.82 and 95" quantile 5.98). The outlier estimations show absolute
errors beyond 20 % of target R;,. This variability shows that the influence of weather conditions on
the ML-estimation of R, is not negligible. A data subset longer than 2 days is certainly needed to
decrease this variability.

Minimal measurement duration for model training

Figure 3.10 shows boxplots of all 2000 R, ML-estimations with the 7 data subsets: model training
from 2, 3, 5, 8, 11, 15 and 25 days data. From the figure can be inferred that the longer the data
subset, the lower the variability. There is distinctively a decrease in total variance, towards a
median value slightly above the target value R;, . Calibrations from 11 days data and more show
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Figure 3.10: 2000 R,, ML-estimations for growing duration datasets: datasets over 11 days are all
within 10 % error to the target R,

all estimated R., values within 10 % of their median value, hence ensures low variability in the R,
estimation with respect to weather influence.

To validate the impression of decrease in variability from Figure 3.10, Figure 3.11 shows for
each data subset the evolution of the total variance of ML-estimations.

From the 2 days and 3 days training, the R,;, ML-estimations have a total variance around
1.2 x 1077 K?/W?2. With 8, 11 and 25 days training, the total variance decreases respectively by a
factor 3, 4 and 6. Partial variance evolution will be further discussed in the next section.

As a partial conclusion, 11 days training suffices to reduces the error below the 10 %. Longer
training still significantly reduces the overall variance. However, from a practitioner’s point of view,
longer experiments might be unnecessary, as it would immobilize the experimental setup almost
twice as long for an all in all relative decrease in uncertainty.

Influential weather variables on an R, estimation

The synthetic weather files allow a global sensitivity analysis on the output with respect to 6 weather
variables. Figure 3.12(a) shows the sensitivity indices of the estimations of some parameters with
respect to the weather variables: R.,. The sensitivity indices are calculated for all 7 data subsets.
The indices shown in Figure 3.12(a) are the first order indices, meaning that they only show the
direct influence of each weather variable. If the sum of each first order indices is close to 1, it would
imply that there were almost no second order effects, i.e. combined effects of the weather variables.

The values of the sensitivity indices are always simply estimated. The indices given in Figure
3.12(a) should mainly be interpreted as order of magnitudes. Indices below 0.1 may be considered
insignificant, given the uncertainty of their estimation.

In Figure 3.12(a) can be seen that the variability of the R,, ML-estimations are influenced by
the outdoor temperature and the wind speed. With shorter datasets, the sum of the first order indices
is significantly inferior to 1. This means that the variability is also explained by interactions of
weather variables. Variability from with longer datasets is on the contrary almost only explained
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Figure 3.13: Variability of the R,, ML-estimations from 11 days training with respect to outdoor
temperature and wind speed. Colours refer to £15 % errors to target R;,.

by the variability of outdoor temperature and wind speed, seeing that the indices add up to 1. Let
us also note that wind direction was not expected to have an influence on the estimations as it is
not used in the infiltration and ventilation model of EnergyPlus. Its sensitivity indices are indeed
insignificant.

This outcome is also visible in the evolution of the partial variances of each weather variable
shown in Figure 3.12(b). Let us remind that the total variance is the sum of all order partial
variances. The figure shows the first order partial variances, i.e. the partial variances due to the
effect of each weather variable individually. With these elements in mind, it is visible that the total
variance of the 11, 15 and 25 days datasets is solely explained by first order effects of the weather
variables, mainly outdoor temperature and wind speed.

Let us now examine how outdoor temperature and wind speed influence the R., ML-estimations.
Figure 3.13 shows how the R., ML-estimations from 11 days training vary with the average outdoor
temperature on the abscissa and the average wind speed on the ordinate. Warmer training periods
tend to produce over-estimations and colder days under-estimations. At the same time, non windy
days produce in overall over-estimations, windy days under-estimations.

At the same time, an interaction can also be seen in Figure 3.13: training from warm and
unwindy days results in over-estimation, cool and windy days in under-estimations.

This outcome is in agreement with the hypothesis that the large air change rates in the reference
model are a cause of inaccuracy in the estimation of the overall thermal resistance. As the
ventilation related heat losses have been modelled in the EnergyPlus simulation environment, there
is a direct relationship between temperature difference between indoors and outdoors and wind
speed. Ventilation related heat losses are larger with cold outdoor temperatures and with high wind
speed and on the contrary smaller with warmer or unwindy days.

Finally, Figure 3.14 shows more clearly how the influence of outdoor temperature and wind
speed evolves from short to longer model training.

As seen earlier, this figure too shows the decrease in total variance of the R., ML-estimations
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with longer training sets: the vertical spread of all estimations are narrower with the 11 days
training. Interestingly, while the total variability does decrease, the angle representative of the
correlation remains quite similar whatever the dataset length. Longer datasets produce averages
that are less spread horizontally, but the relationship between temperature and R, estimation is
almost unaltered.

A natural assumption would have been to consider that colder days lead to more accurate
estimations than warmer days, as colder days increase the heat losses and thus the heating power
needed to keep up with the indoor temperature set point. This assumption does not seem to hold
here. If it were, the variance would be significantly narrower under cold days than under warm
days. Here, there is no significant difference in vertical spread between cold and warm days, nor is
there any between windy and unwindy days.

Decomposition of heat losses in a building

Diagnosis of the thermal performance of a building envelope from non intrusive data would benefit
most from an accurate estimation of different sources of heat loss. Determining how much energy
is lost on ventilation and infiltration or through specific parts of the envelope is more informative in
the perspective of building retrofit than a simple overall thermal resistance. It is however unknown
whether on-site measurements in non intrusive conditions are sufficiently informative to make this
type of detailed estimations. The dynamical nature of data collected in these conditions could
however be beneficial for training of RC models.

This chapter proposes to apply the model assessment framework defined in Chapter 3.1 to
this purpose. The idea is to determine whether stochastic RC trained models deliver individually
interpretable parameter estimates.

So far, the model assessment framework has been applied to assess repeatability of a RC model
when weather conditions are variable. Convergence has been found to be achieved within 11 days
for the estimation of an overall thermal resistance. Interpretability of each parameter separately has
however not been established.

In particular, this chapter will examining if identifiability and interpretability of heat transfers
by ventilation and heat transfer to an unheated crawl space can be achieved. The corresponding
parameters will be identifiable if they can be estimated even from poorly informative data, as is
simulated in the model assessment framework designed in 3.1. Interpretability is then assessed by
comparing the estimations from the theoretical target values.

Section 3.3.1 describes in detail how the model assessment framework is applied to the afore-
mentioned objective. Section 3.3.2 then presents the results of the application to the assessment
framework on the interpretability of heat losses by ventilation.

Model assessment framework for heat transfer decomposition

Interpretability of parameter estimates taken individually means that they actually represent the
physical property (or aggregated properties) they are supposed to represent. In other words, a
given parameter estimate should take the value of the exact actual (aggregated) property(ies) it is
supposed to represent, without lumping the dynamics or the influence of an unrelated other physical
property. The interpretability assessment framework proposes to verify that a change in the actual
property value translates as a change in the value of the ad hoc parameter.

The general idea is therefore to make a number of variations in the thermal properties of the
reference model and to study the induced variability in the parameters’ estimations. This section first
establishes reasonable objectives for the estimation of decomposed heat transfer, secondly exposes
how the numerical model assessment methodology is applied to answer the stated problem, then
details what state space models are fit to the simulated data and finally establishes the convergence
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of the sensitivity analysis performed in the model assessment framework, proving that the results
exposed in the following sections can be trusted.

What decomposition can be reasonably expected?

In the expectation of diagnosing energy performance of a building and in particular thermal
performance of the envelope, the more detailed the diagnosis, the more useful it will be for
establishing pertinent retrofit strategies. However, in a non intrusive design of experiment, the
data available reduces the possibilities, in particular as only temperatures of the heated space are
measured. Not all physical characteristics or systems may be diagnosed from only temperature
measurements.

This restrictions are similar to issues in calibrating whole detailed building models from
experimental data. [Str93] adresses them by suggesting a global sensitivity analysis to determine
the adequate spatial and temporal measurements. The idea behind this suggestion is that an input
parameter in a whole building model may be estimated from data if it has an influence on the
measured output. [Jos17] too, aiming at fault detection in the building envelope, found through a
Morris sensitivity analysis that thermal bridges and local insulation defaults could not be estimated
from temperature measurements as their influence is found insignificant on temperature differences.

Back to the model assessment framework, it can be understood that the only estimable thermal
properties are the ones that have a detectable influence on the measured model output (indoor air
temperature). This leads to determine the physical characteristic that have a significant influence on
indoor temperature.

[Jos17] found that the influential parameters detectable in indoor temperature are the insulation
thicknesses, in particular when considered equal in all walls. When a locally faulty insulation is
considered, for example in the wall of a particular room, that default would not be detectable on a
south oriented wall, but would be on the other orientations. An application of the method on a case
study aiming at quantifying a linear thermal bridge was not successful, showing that a local default
like a thermal bridge does not have a detectable influence on indoor temperatures. The method and
results in [Jos17] are developed on a case study of a newly built highly energy efficient dwelling,
which has specific heat transfer dynamics: solar gains contribute largely to the energy balance. For
this reason, a similar analysis on a poorly insulated house would probably show different influential
parameters. Also, for the sake of simplicity, [Jos17] did not vary the ventilation characteristics,
although heat transfers through ventilation can be considered significant.

All in all, decomposition of heat transfers of different parts of the envelope seems to be an
achievable objective. Heat losses to neighbouring unheated spaces, where the boundary temperature
can be measured is a possible focus and presents an actual interest in thermal diagnosis. In the
same order of magnitude, heat losses through ventilation seems to be a reasonable objective too.

Notations for the targetted values vary from one author to the other. But with the acknowledged
notations of the Section 3 of ISO 13789 [ISO17], this chapter aims at the following heat transfer
decomposition:

HTC=H,,+H,=H,+H;+H, 3.5

with:

e HTC the Heat Transfer Coefficient (W/K): heat flow rate from indoors to outdoors divided
by the temperature difference,

e H,, the Transmission Heat Transfert coefficient (W/K): heat flow rate due to transmission
through the fabric, divided by the temperature difference,

* H,. the Ventilation Heat Transfer Coefficient (W/K): heat flow rate due to air entering the
heated space, divided by the temperature difference,
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* Hd the direct transmission heat transfer coefficient between the heated or cooled space and
the exterior, for the whole building (W/K),
* and H, (W/K): transmission heat transfer coefficient through unconditioned spaces.
To bridge these objectives with the state space models used for the estimation of said thermal
properties, the rest of the chapter will rather focus on the estimation of thermal resistances, as the

inverse of the heat transfer coefficients: R., = #m R,. = % etc...
ve

Application of the model assessment framework

The objectives of this application of the model assessment methodology are threefold:

* (A) examine the interpretability of the overall thermal resistance,

* (B) identify independently the air change rate,

* (C) decompose heat losses towards unheated neighbouring spaces from losses to the outdoors.

This subsection details in 3.3.1 what modifications are done to the reference model in the model
assessment framework and in 3.3.1 what post-processing is done to the simulated data.

The case study model described in section 3.1.1 undergoes modifications as to cover a wide
range of building thermal properties : from poorly to highly insulated, from low to high air change
rates, from low to high thermal inertia. However, neither the reference model structure nor its
design change.

The modifications for the simulations are done on wall, attic and ground floor insulations, as
well as on ground floor slab and brick wall thermal capacity (serving objectives (A) and (C)) and on
air change rates (serving objective (B)). The modifications of the thermal properties of the reference
model, the inputs, follow a specific design of experiments allowing both a thorough exploration
of the inputs space and a sensitivity analysis. A Latin Hypercube Sampling is therefore chosen,
and sampled on uniform distributions on all 6 physical properties. Table 3.2 gives the boundaries
between which the parameters vary, as well as complementary thermal properties of interest.

The 300 building configurations are simulated from January 1* to February 28" on the basis of
an actual weather dataset.

The weather has been measured in Le Bourget du Lac (73, France) in 2019. The measurements
have a 1 minute timestep and have been adapted to the EnergyPlus weather input file format, such
as to contain: dry bulb temperature (°C), field dew point temperature (°C), relative humidity (%),
atmospheric pressure (Pa), horizontal infrared radiation intensity (Wh/m?), global horizontal
radiation (Wh/m?), direct normal radiation (Wh/m?), diffuse horizontal radiation (Wh/m?), wind
direction (°), wind speed (m/s), total sky cover, opaque sky cover, field visibility (m) and ceiling
height (m).

From the two months simulated data, a training period must be chosen. A small selection
would, as found in Section 3.2, induce a non negligible effect of the weather conditions on the
result. At the same time, a long dataset would just unnecessarily burden the computational cost
without adding significant information to the calibration process. A length of 11 consecutive days
will be selected in agreement with the outcomes of Section 3.2.

Also, to avoid the influence of the warm-up process of EnergyPlus, which repeats multiple
times the first day of simulation to initiate usual temperature conditions, the dataset selection for
calibration should not start in the first 2 weeks of the simulation.

Finally, the data used for calibration is resampled with a timestep of 8 minutes. Larger timesteps
may imply aliasing. But again shorter timesteps will enhance computational burden without proving
to be much more informative than a 8 minutes timestep.

With the aforementioned constraints in mind, the chosen selected dataset runs arbitrarily
between January 31 and February 10"*. As shown in Figure 3.15, the selected 11 days present
rather mild outdoor temperatures, varied solar irradiation with sunny and cloudy days and varied
wind speed conditions.
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floor concrete cast

Object
Variable Bounds Units Other info
in EnergyPlus
Walls (Material)
ateria
insulation , [0.05;0.25] m A=0.032W/(m-K)
. Thickness
thickness
Attic
Material
insulation (Material) 0.05025] | m | A=0.04W/(m K)
. Thickness
thickness
Ground floor
Material
insulation (Material) 0.05025] | m | A=0022W/(m-K)
. Thickness
thickness
(ZoneVentilation:
Air Change Rate DesignFlowRate) [0.2;2.0] h! )
Air changes per Hour
Thermal (Material)
ateria
capacity Specific Heat [0.6;1.0] | J/kgK e=13cm
i
brick wall pectlic Hea
Thermal (Material)
ateria
it 1.0;2.0 J/kgK =20
capactly Specific Heat | ] /ks ¢ cm

Table 3.2: Physical thermal properties variations of the reference model for the decomposition

study
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State space model selection and validation

300 datasets have been produced from 300 different configurations of the reference building. To
exploit the datasets and estimate the thermal resistances set as objectives, adequate stochastic RC
models need first to be selected. Then, after appropriate model calibration, the most appropriate
models are selected through a likelihood ratio procedure. If the selected models also achieve model
validation tests, physical interpretability may be assessed.

The first step is to select an appropriate model : the model best fitting the data and which
residuals are significantly not autocorrelated and have white noise properties, in which case the
significant heat dynamics are covered by the model. One node models are not proposed in the
process as they show very poor fit to the data. In the end, a set of structurally identifiable is selected
and tested:

e two nodes: T,,T; R,R; A;, T,,T; R,R; A,, and T,,T; R,R; A, A;,

¢ two nodes with infiltration/ventilation term: 7,,7; R,R; A c,,

* two nodes with measured temperature in a neighbouring unheated space: T,,T; R,R; A Ry,

* two nodes & one node towards neighbouring space: T,,T; R,R; A Tj, RipRpp.

From each of the 300 simulations, a subset of data from January 31 to February 117 is used
as synthetic data for parameter estimation through model calibration.

As a first step, model selection is performed, but cannot however be done on a single dataset, as
the best fitting model is likely to be related to the reference model configuration. Best fitting model
for one dataset may then not be valid for other datasets. This implies that for all models tested in
the selection process and for each of the 300 datasets, a calibration needs to be performed. The
number of calibrations adds up to at least 1500.

A Bayesian calibration, although preferred as it draws from the actual posterior distribution,
would here bring a considerable computational burden. On the other side, model selection based on
likelihoods comparison has been proven reliable [BM11]. Therefore, the model selection process is
performed on the basis of a frequentist calibration of a set of adequate state space models, through
a BFGS optimisation.

Each of the 300 configurations undergoes the same model selection process, based on a
likelihood ratio test [BM11]. Each data subset is used to calibrate models in a certain order,
respecting the principle of nested models: .#,,,;; C .#;, if upon setting one or more parameters of
Myy; 10 0, it becomes identical to .#Z,,;.

A likelihood ratio test then compares a proposed model .#,;,, also called alternative model,
to a basic model .#,,,;, also called the null hypothesis model. These models need to verify
My C My For a dataset, both models are fitted. The logarithmic ratio of their likelihoods is
calculated. To test if there is a significant improvement in the likelihood, the significance of the test,
the p-value, is estimated through the x> value of the ratio. If the p-value is smaller than for example
the usual 0.05, than the alternative model is significantly better than the null hypothesis model.

The model selection test would then normally start with one basis "null" model, the one node
model for example. This model however was found to be an extremely poor fit to the data and has
been discarded. It is proposed here to rather start with two nodes models and unusually start with
choosing between T,,T; R,R; A; and T,,T; R,R; A,,. As the reference model originating the simulated
data is subject to solar irradiation, a two nodes model without solar parameter makes no physical
sense. Starting with choosing between 7,,7; R,R; A; and T,,T; R,R; A,, alleviates the computational
cost of calibrating a model on another 300 datasets.

Models T,,T; R,R; A; and T,,T; R,R; A,, are however not nested and the comparison is made
with simple log-likelihoods calculations, asis shown in Figure 3.16: the higher the log-likelihood,
the better the fit. The grey dotted diagonal line marks the place where models have an equally good
fit to the data. Points under the diagonal line have a higher likelihood for the x-axis model whereas
points over the diagonal line have a higher likelihood for the y-axis model.
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Figure 3.16: Log likelihoods of best fits for models 7,,7; R,R; A; and T,,T; R,R; A,, for each 300
samples: all points under the 45° line favour the x-axis model (7,,7; R,R; Ay,).

From Figure 3.16 can therefore be inferred that the model selection process should start with
model T,,T; R,R; A,, as a vast majority of points are under the diagonal line, favouring therefore the
x-axis model 7,,T; R,R; A,,.

The next round of test will consider the null hypothesis as being the model 7,,T; R,R; A,,, which
has just been selected. The alternative models, verifying .#,,,;; C .#,;, are models T,,T; R R; A,,
¢y, T,Ti RoR; Ay Ry and T, T; R,R; A,A;. The likelihood ratio test is applied to infer whether there
is a significant difference between the null hypothesis and the alternative models, with results of
the rest shown in Figures 3.17.

Figure 3.17(a) shows all 300 p-values of the likelihood ratio tests for all 3 alternative models
against null hypothesis model T,,7; R,R; A,,. All values except a few are below the 5% acceptance
limit. In overall, it can then be considered that all 3 alternative models are significantly better than
null hypothesis model.

To distinguish between different alternative models, [BM11] select the one with the better
score on likelihood. Figure 3.17(b) therefore shows for all 300 results the log-likelihoods for all 3
alternative models on the y-axis, while the x-axis shows the log-likelihood of the null hypothesis
model.

Similarly to Figure 3.16, if the y-axis models perform better than the x-axis model, the points
would be driven on the upper side of the grey dotted diagonal line. Figure 3.17(c) shows for one
that alternative model 7,,7; R,R; A,,A; in yellow crosses is spread around the diagonal line and
rather lower than the other alternative models. Model T,,T; R,R; A,,A; may be discarded for now.
Figure 3.17(c) also shows that the two other alternatives seem to perform similarly. Figure 3.17(c)
therefore pictures the log-likelihoods of the two alternative models one against the other. The points
are spread around the diagonal line, meaning that the choice between one or the other would be
case dependent. A statistical study of their individual residuals could yield additional information
on their performance to help for a choice.

From the model selection based on prediction fitness of the previous section, models 7,,7; R,R;
Ay Ry, T,,T; RyR; A, ¢, and basis model T,,T; R,R; A,, seemed rather appropriate.

As final validation step, as suggested by the workflow in 2.3, the white noise property test of the
models’ prediction residuals is performed. Figure 3.18(a) shows the autocorrelation of the residuals
(with filter) for all 3 models and Figure 3.18(b) shows the quantile-quantile plot for normality
verification of the residuals (on filtered predictions too).

Figure 3.18(a) shows that the residuals of the two alternative models 7,,T; R,R; A,, R, and T,,T;
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Figure 3.18: Validation tests of the 3 models under consideration. The autocorrelation and the
qq-plot for normality of the residuals are ways to verify that the residuals have white noise property,
i.e. are sufficient to explain the dynamics in the data.
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Abbreviation Thermal property Sampling bounds | Units
Floor Ground floor insulation thickness [0.05; 0.25] cm
Walls Walls insulation thickness [0.05; 0.25] cm
Attics Attic insulation thickness [0.05; 0.25] cm

CthFloor Thermal capacity floor concrete cast [1.0; 2.0] J/kgK
CthWall Thermal capacity brick wall [0.6; 1.0] J/kgK
ACH Air Change Rate [0.2; 2.0] h!

Table 3.3: Reminder meaning and sampling bounds af all 6 inputs to the sensitivity analysis

R,R; A, ¢, are much less autocorrelated than null hypothesis model 7,,7; R,R; A,,. This indicates
that both the alternatives should be a better fit for the data.

Figure 3.18(b) shows how the residuals perform compared to a reference normal distribution.
Although tails are large and show no normally distributed behaviour, both alternative models’
residuals are rather normally distributed. The tails might be larger than for normal distributions
because of the temporal resolution of the data. If the building has low characteristic times and the
heating power is fast compared to the measurement temporal granularity, the residuals will show
a certain lag when the temperature setpoint changes. In other words, the indoor air temperature
seems to respond fast to the heating power delivered, which is not well caught by the 8 minutes
time step. This would call to future smaller time steps, if the case study or the actual building is
thought to have low characteristic times.

As a conclusion, it seems that models T,,7; R,R; A,, R, and T,,T; R,R; A,, ¢, fit rather satis-
factorily the available data, although not perfectly. On the basis of prediction, the good practice
workflow would not prefer any of them. More comprehensive models were found in any case
practically non identifiable. They are good candidates to a further interpretability, for both an
overall R, estimation and for individual interpretability assessment.

Estimation of the heat losses through ventilation

As heat losses through air change have shorter time characteristics than heat losses through
the building envelope, it might be expected that models taking this time characteristic in their
formulation might enable to decompose losses through the envelope from losses by air change.

In this section, the model assessment methodology is applied to study the ability of model 7, T;
R,R; ¢, to achieve such a decomposition. Parameter cv should physically represent heat losses
through air change whereas parameters R, and R; rather account for losses through the envelope,
with a longer time characteristic induced by the thermal capacity.

Let us remind here in Table 3.3 the meanings and bounds of the thermal properties used as
inputs of the sensitivity analysis.

Variability of parameters C,,, C;, R,, R;, A,, and ¢v of model 7,,T; R,R; ¢,
The inputs variability induce different configurations that may reflect on the estimated values of the
parameters of model 7,,T; R,R; c,.

Figure 3.19 shows the variability of parameters R,, R;, C,,, C;, A,, and cv of the state space
model with respect to the variability of the 6 inputs.

Both thermal resistances R, and R; show a correlation with mainly the air change rate and
secondly with the attic insulation. The insulation of the walls seems to have on the contrary no
influence on the value taken by the resistances, compared to the variability induced by the air
change rate and the attic insulation. Parameter cv seems to be only correlated to the air change rate
input. The rest of variability looks like random noise.
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Figure 3.20: Sensitivity indices of all 6 physical parameters of model 7,,T; R,R; ¢,

Both thermal capacities C,, and C; also have a strong dependence to the air change rate, whereas
it could have been expected that the two inputs of thermal capacities (that of the ground floor slab
and that of the brick wall) had the major influence.

Parameter A,, shows a large correlation to the attic insulation input. It is likely due to solar
irradiation on an almost flat roof causing significant temperature variations. These temperature
variations induce heat transfers between the attic and the indoor space that are proportional to the
thickness of the insulation between the attics and the indoor space, i.e. to the input variable *Roof
insulation’.

Sensitivity analysis of parameters C,,, C;, R,, R; and cv

Previous section established possible correlations between certain inputs and the studied outputs.
A global sensitivity analysis through variance decomposition will in addition quantify the part of
variability due to each input variable and assert significance of their influence.

Figure 3.20 shows the sensitivity indices calculated with the RBD-FAST method. Let us remind
first that the convergence is achieved and that the indices may therefore be interpreted. Sensitivity
indices have been calculated for quantities of interest R,, R; and cv.

The global variability of R, is mainly explained by the variability of input air change rate
(index 0.58) and to a much lesser extent by input attic insulation (index 0.25). A small part of the
variability is explained by effect of the interaction of several inputs, as the total sum of the indices
of parameter R, is not quite close to 1, even considered the uncertainty of the indices.

Similarly, the variability of R; is explained by the variability of the air change rate (index 0.87)
and to a lesser extent the attic insulation (index 0.11). Here, the sum is very close to 1, meaning no
interaction effects. Variability of cv is only explained by air change rate (index 0.93), the rest being
insignificant.

Estimation and physical interpretability of ventilation and infiltiration
That all R,, R;, C,,, C; and cv show correlation to the air change rate may also suggest that they
all just have a strong covariance, from the parameter estimation, which would indeed translate
as a fortuitous correlation. To support this hypothesis, Figure 3.21 shows the probability density
functions of all 300 covariances between each couple of parameters.

The covariance between two parameters 8; 0, is large when around the optimal fit a small
variation in 6 is correlated to an identical or opposite variation in 6, without affecting much the
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Figure 3.21: Covariance between parameters of model TwTi RoRi cv: parameter cv has a large
correlation with parameters R, and R;, as are R, and R; together

likelihood. Then, it is very likely that both parameters are practically non identifiable. Although the
combination of model parameters reaches the best fit, it is impossible to determine the best fitting
values for each parameter individually when their covariance is high.

In this figure for example, the covariance of parameters R, and R; may be calculated after each
calibration. As there are 300 calibrations, all 300 covariances between R, and R; may be rendered
as a probability density function. Functions higher than 0.5 or lower than -0.5 mean that all 300
covariances are higher than 0.5 or lower than -0.5, meaning that the covariance is significant in all
configurations. Figure 3.21 then suggests that R, R;, R, cv and R; cv have strong covariances. To a
lesser extent, set R, A,, also shows significant negative covariances. Taken individually, parameters
R,, R; and cv should probably not be physically interpreted.

Model T,,T; R,R; c, introduces parameter ¢, to take into account ventilation and infiltration
dynamics as a heat flux on the indoor temperature node. The flux is defined as follows:

P, = vapcp(Tex - Tim) 3.6)

In 3.6, V the heated volume of the building, p the volumic mass of air and ¢, the specific heat
capacity of air are known, which leaves one unknown in the equation to estimate: c,. With this
definition, c, is then an average air change rate over the duration of the experiment, with dimension
h~!. Let us shortly mention that in the simulation conditions, the air change rate actually varies in
time with the temperature difference and with the wind speed.

As cv could be interpreted as an averaged air change rate, let us take a closer look to the
variability of parameter cv in Figure 3.22 where the dotted 45° grey line would be the perfect
estimation of the air change rate. Parameter cv is positively correlated to the air change rate: the
higher the air change rate the higher the parameter cv. However, low air change rates induce a
systematic overestimation and high air change rate a systematic large under-estimation.

Seeing the significant covariances between all resistance parameters and seeing that variability
of the estimation of ¢, and its error to the simulated value of air change rate, it is expected that
ventilation and infiltration losses cannot be properly identified from the current design of experiment.
Figure 3.23 shows the estimated sum R, + R;, Ryensitarion and Re, against their target values for each
of the 300 reference model configurations.

The sum R, + R;, supposedly representing the heat resistance between the indoor space and the
exterior, shows no significant correlation with the target value. As for ventilative losses, the order
of magnitude seems to be rather well estimated, but with a high variability: for an identical target
value, the error spreads from -50% up to 90%. In overall however, the equivalent thermal resistance
is well in agreement with the target value.
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Conclusions on decomposing ventilative heat losses

Section 3.3.2 applied the numerical model assessment methodology to assess the ability of model
T, T; R,R; c, to separately identify heat losses through ventilation from the rest of the heat losses,
by means of the estimation of an averaged air change rate parameter. The results indicate that
model 7,,T; R,R; c, estimates the air change rate parameter ¢, with errors up to 90% in absolute
regardless of the target rate, implying that the order of magnitude is rather well estimated, but that
physical interpretation would be risky.

Highly correlated parameters, visible in significant covariances, are in this study a clear hint that
the physical interpretation of the parameters separately is not possible. The performed sensitivity
analysis was a confirmation that the high covariances translate in unlogical variability in the
parameter estimations with respect to the changes in the reference model.

Model T,,T; R,R; c, was however found in the model selection process as to fit satisfactorily the
data. The results of this section confirm it by showing that the overall thermal resistance R, is in
good agreement with the target value. This indicates that high covariances between parameters may
still bear physical meaning when said parameters are combined, as in R,,.



4.1

(4. Practical applications

Chap. 3 presented a theoretical study of the limitations and potential of building energy performance
assessment based on in-situ measurements. A methodology based on a numerical benchmark and
sensitivity analysis was developed to assess the feasibility of model calibration and the physical
interpretability of estimated model parameters.

The present chapter is the practical part of the contribution of the BAYREB project to the field
of building energy performance assessment. It is a collection of practical case studies, using real
measurement data from either experimental test cells or occupied buildings. During the project,
the methods presented in Chap. 2 for modelling and inference were applied to various monitored
buildings, each with its own characteristics: size, occupancy, type and year of construction,
HVAC systems, measurement setup and available sensors, monitoring time. In order to sort these
applications into useful information for the reader, the layout of this chapter is centered on the
methods and the questions they were used to answer. These questions are summarised in Tab.
4.1 and match the structure of the following sections.

The following sections can be read independently from each other. They are written in the form
of practical exercises, including Python code that the reader may copy and use. In most cases, we
tried to make the data accessible so that the code is directly applicable. These examples may also
be available in two forms:

* Jupyter notebooks published on the tutorial website http://buildingenergygeeks.org,

where some of the data may also be downloaded.

* Publications in journals.

Energy signature: performance assessment with little informnation

This section is available as a Jupyter notebook on http://buildingenergygeeks.org.
This is why some parts of the description of the energy signature method, which was already
given in Sec. 1.2.2, are repeated here.

The energy signature of a building is a very simple model of its energy consumption profile (all
energies combined) as a function of the outdoor temperature. Provided a long enough monitoring
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Method Question Case study Occupancy
Energy signature Performance assessment  Office buildings Yes
with little information
Linear regression Identifying the influences House Yes
of the energy balance
State-space models Robust parameter Experimental house No
estimation
Latent force models Robust performance Experimental house  Virtual
prediction

Sequential Monte-Carlo Real-time HLC estimation Experimental cell ~ No

Linear regression, SSM, Decomposing HLC into House Yes
IMM HTC and infiltration

Table 4.1: Layout of the practical applications and the questions they wish to answer

period of a building, the method is able to provide a crude estimation of its heat loss coefficient
(HLC), and to separate its energy consumption into two (or three) main parts: heating and/or
cooling, and other uses. Using a trained energy signature model to predict the energy use is possible,
but comes with a large uncertainty.

The appeal of this method is that the data we need to train the model is very easy to obtain:

* Outdoor air temperature

* Energy consumption

We don’t even need a short time step between each meter reading, as the data will be resampled
(averaged) over samples of one or several days.

The model

The model is written here in terms of the average power ® (W) between energy readings (kWh).
The total electrical power used in a building is decomposed into three parts: the baseline
consumption @, (lighting, appliances, DHW...), heating power ®,, and cooling power @,

D =Dy + Py +Pe @1

The energy signature method relates the heating and cooling energy use to easily measured
environmental parameters, typically the outdoor temperature. The model relies on the following,
very convenient hypotheses:

 Steady-state: each data point is the average of readings over a sufficiently long period (several
days), so that dynamic effects can be overlooked.

* The baseline consumption ®,, is constant over this broad sampling frequency.

* The indoor temperature is assumed to be quasi-constant, so that heating only is needed when
the outdoor temperature 7, is lower than a base temperature 75;. The heating power is then
only proportional to the HLC.

* The influence of all other environmental factors is neglected.

The heating power is then approached by the following equations:

®;, =HLC, (T — To) if T,<Ty 4.2)
$,=0 if T,>Ty 4.3)
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If the building has air conditioning, the same relation can be assumed for cooling, if the outdoor
temperature exceeds a threshold 7j;:

$. =0 if T,<Tpy 4.4)
®. = HLC, (T, — Tj2) if T,>Tp (4.5)

The model therefore has either three or five unknown parameters: the baseline power ®,; the
heat loss coefficient HLC, which may have a different value in heating than in cooling conditions;
one or two threshold temperatures 7

The data: commercial buildings

The data used in this example to illustrate the energy signature method is the hourly energy
consumption and outdoor air temperature data for 11 commercial buildings (office/retail), publicly
available here!.

The code written below supposes that the data files have been downloaded and saved to a /data
folder. We are only going to use three of the available data files, which are three consecutive years
from a single office building: building60preoffice.csv, building6lduringoffice.csvand
building62postoffice.csv.

It starts by some imports.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

A data analysis exercise usually starts by taking a look at the formatting of the data files.

df = pd.read_csv('data/building60preoffice.csv')
df .head()

Date QAT Building 6 kW

0 1272009000 418 23.3
1 1/2/20091:00 409 231
2 1272009 2:00 395 23.7
3 1272009 3:00 363 29.1
4 1/2/2009 4:00 32.8 35.6

The datafile is already "clean" with no missing value. The only data processing we will do
before defining and training the model is:

* Translating the Date column into a datetime object which Python understands as temporal
data

* Converting the outdoor air temperature 0AT from (F) to (C) because the data originates from
the USA

* Averaging the data over periods of one day

* Noting the day of the week, because this factor usually has an impact on the consumption of
retail and office buildings

Uhttps://openei.org/datasets/dataset/consumption-outdoor-air-temperature- 1 1-commercial-buildings
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df .set_index(pd.to_datetime(df['Date']), inplace=True)
df ['Te'] = (df['0AT']-32) * 5/9

# New dataframe for the daily averaged data
df _day = df .resample('D') .mean()

# Week days
df _day['week_day'] = [df_day.index[_] .weekday() for _ in range(len(df_day))]
weekend = (df_day['week_day']==5) | (df_dayl['week_day']==6)

df _day.head()

OAT Building & kW Te week day

Date
2009-01-02 33.375000 36.787500 0.763889 4
2009-01-03 18.908333 44187500 -7.273148 &
2009-01-04 17.700000 48645833 -7.944444 G
2009-01-05 23.445833 51.983333 -4.752315 0
2009-01-06 45.941667 41.891667 7.745370 1

We can now take a look at the relationship between air temperature and power, in order to see if
there is a trend.

plt.figure()

plt.scatter(df_day['Te'] ["weekend], df_day['Building 6 kW'][“weekend])
plt.scatter(df_day['Te'] [weekend], df_day['Building 6 kW'] [weekend])
plt.xlabel('Outdoor temperature (C)')

plt.ylabel('Mean daily power (kW)')

plt.legend()

plt.show()
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Outdoor temperature (C)

Each dot is one day. This plot clearly shows two things:
» Week days and week ends are separated: in the following, we should only keep week days
for the energy signature model.
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* The power is clearly influenced by low and high temperatures. The trend seems close to
linear on each side, confirming the choice of the energy signature model (this particular
building was not chosen randomly...)

Model definition and training

The energy signature model is an expression of the total electric consumption of a building as a
function of the outdoor temperature and up to five fixed parameters. The notations of the code
below match the equations given earlier.

def signature(T, Phi_b, T_bl, T_b2, HLC_1, HLC_2):

mmnn

input : temperature T, and five parameters
output: power P

mnmn

P = Phi_b * np.ones(len(T))

maskl = T < T_bl
P[mask1] += HLC_1 * (T_bil-T[mask1])

mask2 = T > T_b2
P[mask2] += HLC_2 * (T[mask2]-T_b2)

return P

Now that this evaluation function is defined, we can use it in a curve fitting algorithm
which will find the optimal parameters to match a given dataset: the curve_fit method of
the scipy.optimize library. The week end days are filtered out. The method requires a starting
point pO for the parameters, which we can estimate from the graph above.

from scipy.optimize import curve_fit

T = df_day['Te'] ["weekend]
P = df_day['Building 6 kW'][“weekend]

popt, pcov = curve_fit(signature,
xdata = T,
ydata = P,
p0 = [20, 10, 15, 1.5, 1.5])

print('Baseline power: %.2f kW' % popt[0])
print ('Lower threshold temperature: %.2f C' % popt[1])
print ('Upper threshold temperature: 7.2f C' % popt[2])
print ('HLC (winter): %.2f kW/K' % popt[31)
print ('HLC (summer): %.2f kW/K' % popt[4])

Baseline power: 34.57 kW
Lower threshold temperature: 6.53 C
Upper threshold temperature: 15.62 C
HLC (winter): 1.38 kW/K
HLC (summer): 1.18 kW/K

# Plot the results: comparing the fitted model with its data
xx = np.linspace(T.min(), T.max())
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yy = signature(xx, popt[0], popt[1], popt[2], popt[3], popt[4])

plt

plt
plt

.figure()
plt.
plt.

scatter(T, P, label='data', color='teal')
plot(xx, yy, label='model', color='red')

.xlabel('Outdoor temperature (C)')
.ylabel('Mean daily power (kW)')

plt.
plt.

legend ()
show ()

Mean daily power (kW)

-10 0 1

Outdoor temperature [C)

The model seems well fitted with the trend in the data. As this is a simple exercise, we are

not analysing the indicators of statistical significance of the parameters: this will be done in other
methods such as ordinary linear regression.

Further questions

Comparing the HLC estimation across several years

Since we have three data files for the same building, and each file is one year of measurements, we
can check if the estimation of HLC is consistent across these years. In order to do this quickly, let
us automate the steps described above into a single function that will return the optimal parameters
as a function of only the datafile (this function requires that the labels of all files match).

def

def

prepare_data(datafile):

# Read data
df = pd.read_csv(datafile)
# Process the data

df .set_index(pd.to_datetime(df['Date']), inplace=True)

df['Te'] = (Af['0AT']-32) * 5/9

# New dataframe for the datly averaged data
df _day = df .resample('D') .mean()

# Week days

df _day['week_day'] = [df_day.index[_].weekday() for

df _day['weekend'] = (df_day['week_day']==5)

return df_day

estimate_hlc(datafile):

_ in range(len(df_day))]
(df_day['week_day']==6)
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df_day = prepare_data(datafile)

popt, pcov = curve_fit(signature,
xdata = df_day['Te'] ["df_day['weekend']],
ydata = df_day['Building 6 kW'][“df_day['weekend']],
po0 = [20, 10, 15, 1.5, 1.5])

return popt

popt_0 = estimate_hlc('data/building60preoffice.csv')
popt_1 = estimate_hlc('data/building6lduringoffice.csv')
popt_2 = estimate_hlc('data/building62postoffice.csv')

print ('HLC (heating): %.2f kW/K, %.2f kW/K, %.2f kW/K'
% (popt_0[3], popt_1[3], popt_2[31))

print ('HLC (cooling): %.2f kW/K, %.2f kW/K, %.2f kW/K'
% (popt_0[4], popt_1[4], popt_2[41))

HLC (heating): 1.38 kW/K, 1.25 kW/K, 2.03 kW/K
HLC (cooling): 1.18 kW/K, 0.98 kW/K, 0.89 kW/K

The values are somehow consistent, but the last year of observation shows a much higher
heating consumption relatively to the outdoor temperature. This method can for instance be used to
estimate the impact of energy conservation measures.

Predicting the energy use

Another purpose of the energy signature model is to predict the energy use of a building, supposing
that forecasts of the outdoor temperature are available. In the example below, we will see if the
parameters learned in the first year of measurements, using building60preoffice.csv, can
forecast the consumption observed on the next two years.

# Loading and processing the data files for the second and third years
df _day_1 = prepare_data('data/building6lduringoffice.csv')
df _day_2 = prepare_data('data/building62postoffice.csv')

# Measured consumptions and temperatures

T_1 = df _day_1['Te']["df_day_1['weekend']]

T_2 = df _day_2['Te'] ["df_day_2['weekend']]

P_real_1 = df_day_1['Building 6 kW']["df_day_1['weekend']]

P_real 2 = df_day_2['Building 6 kW'][“df_day_2['weekend']]

# Consumptions predicted by the model trained with the first dataset

P_pred_1 = signature(T_1, popt_0[0], popt_0[1], popt_0[2], popt_O[3], popt_O[4])
P_pred_2 = signature(T_2, popt_0[0], popt_0[1], popt_0[2], popt_0[3], popt_0[4])

plt.figure(figsize=(10,4))

plt.subplot(121)

plt.scatter(T_1, P_real_1, label='data', color='teal')
plt.scatter(T_1, P_pred_1, label='prediction', color='red')
plt.xlabel('Outdoor temperature (C)')

plt.ylabel('Mean daily power (kW)')

plt.legend()

plt.subplot (122)

plt.scatter(T_2, P_real_2, label='data', color='teal')
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plt.scatter(T_2, P_pred_2, label='prediction', color='red')
plt.xlabel('Outdoor temperature (C)')

plt.ylabel('Mean daily power (kW)')

plt.legend()

plt.show()
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We can clearly see that the model trained on the first year of data overestimates the actual
consumption of the next two years. The main difference seems to be the baseline consumption
which has significantly decreased, although it does not seem that the HLC has. This might be
the consequence of energy conservation measures concerning other energy uses than heating and
cooling.

Linear regression: identifying what influences the energy balance

This section is available as a Jupyter notebook on http://buildingenergygeeks.org.
This is why some parts of the description of the energy signature method, which was already
given in Sec. 1.2.2, are repeated here.

Linear regression models are one of the most simple forms of relationship that can be proposed
between measured data. They often serve as an introduction to statistical learning [HTFO1] because
they offer a simple framework to demonstrate the important steps that a data analyst should follow:
model selection, hypothesis testing, validation...

Under some strong hypotheses, the energy balance of a building can be approximated by linear
functions. They however have several limitations: they cannot represent non-linear phenomena,
such as radiative heat exchange between walls; they don’t allow identifying the parameters driving
dynamical phenomena; they impose a fixed structure to the energy balance equation.

Despite these limitations, linear regression models can however be very useful as a first insight
into the heat balance of a building: they allow a quick assessment of which types of measurements
have an impact on the global balance and guide the choice of more detailed models. Moreover, if a
large enough amount of data is available, the estimates of some coefficients such as the HLC often
turn out to be quite reliable.

In this section, we show a practical application of linear regression to the identification of the
important phenomena that influence the energy use in a house.


http://buildingenergygeeks.org
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The data: ORNL test house

The data used in this example was published” by the Oak Ridge National Laboratory, Building
Technologies Research and Integration Center (USA). It contains end use breakdowns of energy
use and various indoor environmental conditions collected at the Campbell Creek Research House
#3, at a 15 minute time stamp. The data availability ranges from 10/1/2013 to 9/30/2014.

This dataset was chosen in this example for the diversity and duration of the available measure-
ments.

Before taking a look at the data, let us start with some imports.

# The holy trinity

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

# What we will use for regression
import statsmodels.api as sm

# bokeh 1s wery good for a first exploration of a dataset
from bokeh.plotting import figure, show

from bokeh.layouts import column

from bokeh.palettes import CategorylO

from bokeh.io import output_notebook

output_notebook()

# Opening the data file and showing the timestamps to pandas
df = pd.read_excel('data/ornlbtricdatafromcc3fy2014.x1sx', header=1).iloc[2:]
df .set_index(pd.to_datetime(df [' TIMESTAMP']), inplace=True, drop=True)

# Dealing with missing values
df .replace('NAN', np.nan, inplace=True)
df .fillna(method='pad', inplace=True)

This dataframe has quite a lot of features, as shown by the output of the .head () method. The
meaning of each column is specified in a separate table. This is where I recommend using the
bokeh library for its convenient plotting tools, shown as an example below.

The house is heated and cooled by a heat pump, and most energy uses (plugs, appliances, hot
water production...) are broken down and measured separately. Temperatures, relative humidities
are also available in several locations. We are going to use the energy use of the heat pump as the
output variable of linear regression models, and try to explain it with the other available variables.

In the following block, a new dataframe is created to only keep variables that we believe may
influence the heating and cooling energy consumption of the house. Note that this is already an
important decision in the data analysis process, as we might be filtering out information that could
have been useful.

* Energy readings: heat pump, domestic hot water production, ventilation fan power and other

uses.

» Temperatures: average indoor temperature, garage (adjacent unheated space), ventilation

supply temperature and outdoor temperature.

* Weather variables: solar irradiance and wind speed are usually known to impact the energy

balance.

Finally, only the monts of November to March are kept in this exercise.

Zhttps://openei.org/datasets/dataset/ornl-research-house-3
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df2 = pd.DataFrame(index=df.index)

# Energy readings: heat pump, hot water, fan and other uses

df2['e_hp'] = df[['HP_in_Tot', 'HP_out_Tot']].sum(axis=1)

df2['e_dhw'] = df['HW_Tot']

df2['e_fan'] = df['Fantech_Tot']

df2['e_other'] = df['main_Tot'] - df2['e_hp'] - df2['e_dhw'] - df2['e_fan']

# Temperatures: indoor, garage, ventilation supply, and outdoor

df2['ti'] = (df[['Din_tmp_Avg', 'Grt_tmp_Avg', 'Brkf_tmp_Avg', 'Kit_tmp_Avg',
'BedM_tmp_Avg', 'Bed3_tmp_Avg', 'Bed2_tmp_Avg', 'BedB_tmp_Avg',
'Mbath_tmp_Avg']] .mean(axis=1) - 32 ) * 5/9

df2['tg'] = (df['garage_tmp_Avg'] - 32) * 5/9

df2['ts'] (df ['FanTsup_RH_Avg'] - 32) * 5/9

df2['te'] = (df['Outside_Tmp_Avg'] - 32) * 5/9

# Other weather wvariables: solar irradiance and wind speed
df2['i_sol'] = df['SlrWi_Avg']
df2['wind_speed'] = df['wind_speed_mean']

# Let's only keep winter for now
df2.drop(df2.index[(df2.index < pd.to_datetime('2013-11-01')) |
(df2.index >= pd.to_datetime('2014-04-01'))], inplace=True)

The following block creates a bokeh plot of the variables we just selected. This library offers
convenient features such as the ability to zoom in or pan on a graph, and to hide legend entries by
clicking them.

palette = Categoryl0[5]

pl = figure(x_axis_type="datetime", y_range=(-20, 40),

plot_width=800, plot_height=300)
pl.line(df2.index, df2['ti'], color=palette[0], legend='Indoor temperature')
pl.line(df2.index, df2['tg'], color=palette[l], legend='Garage temperature')
pl.line(df2.index, df2['te'], color=palette[2], legend='Outdoor temperature')
pl.line(df2.index, df2['ts'], color=palette[3], legend='Vent. supply temperature')
pl.legend.location = "bottom_right"
pl.legend.click_policy="hide"

p2 = figure(x_axis_type="datetime", x_range=pl.x_range,
plot_width=800, plot_height=300)

p2.line(df2.index, df2['e_hp'], color=palette[0], legend='e_hp')

p2.1line(df2.index, df2['e_dhw'], color=palette[l], legend='e_dhw')

p2.1line(df2.index, df2['e_fan'], color=palette[2], legend='e_fan')

p2.1line(df2.index, df2['e_other'], color=palette[3], legend='e_other"')

p2.line(df2.index, df2['i_sol'], color=palette[4], legend='i_sol')

p2.legend.location = "top_right"

p2.legend.click_policy="hide"

p3 = figure(x_axis_type="datetime", x_range=pl.x_range,

plot_width=800, plot_height=300)
p3.line(df2.index, df2['wind_speed'], color=palette[0], legend='wind_speed')
p3.legend.location = "top_right"

show(column(pl, p2, p3))
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The model

Since we have time series data, the most informative way to use it would be a time series model,
typically of the family of autoregressive models with exogenous variables, or an RC state-space
model. This would allow us to identify the influences on the dynamics of the output variable.

The present notebook however proposes a more simple, stationary balance equation. This is
the full model equation that we are going to consider, supposing that the heat pump is operating in
winter conditions:

P+ Ps+ Py + Ping = H (T, - T.) + Hy (Ti — T) (4.6)

On the left side are the heat sources @ (W), some of which may be negative

* &y, < ey, is the heating power provided by the heat pump to the indoor space. It is propor-
tional to the energy reading e;, (Wh), which we will use as output variable, and to the time
step size and the COP of the heat pump, supposed constant.

o &, = Ay, are the solar gains, supposed proportional to the measured outdoor solar irradi-
ance I,; (W/m?) and an unknown constant solar aperture coefficient A (m?).

* &, =rirc, (Ty — T;) is the ventilation heat input, with a ventilation supply rate 7z and supply
temperature T, which is measured (the house has a mechanical ventilation system with heat
recovery)

* @, ¢ ~ V,s(T, — T;) is the heat input from air infiltration. We suppose it is proportional to the
wind speed V,,; and the outdoor-indoor temperature difference.

On the right side are two terms of heat loss through the envelope:

* H(T;—T,) is the direct heat loss from the heated space at temperature 7; and the outdoor at
T,

* H,(T; — T,) is the heat loss through the partition wall between the heated space and an
unheated garage at 7.

Linear regression should allow us to identify the coefficients of each term, supposing that they
have enough variability and influence on the output ®,,. The outcome of the regression method
will let us judge if this hypothesis is appropriate.

In the next step, we create new features in the df2 dataset to match the hypothesis of this model.
Next, data are resampled over daily steps, in order to allow the hypothesis of stationary conditions.

df2['tits'] = df2['ti'] - df2['ts']
df2['vtite'] = df2['wind_speed'] * (df2['ti'] - df2['te'])
df2['tite'] df2['ti'] - df2['te']
df2['titg'] = df2['ti'] - df2['tg']

df_day = df2.resample('1D') .mean()

Training
First simple model

Before fitting the full model shown above, let us try one with a single explanatory variable, which
we assume has the most influence on the energy use of the heat pump: the heat transmission through
the envelope.

€hp = ai (Tl - Te) 4.7)

where the a; parameter includes the heat loss coefficient H, the COP of the heat pump and the time
step size. Since the COP is unknown, we won’t be able to estimate H. This is fine, as the point of
the exercise is mostly to identify influential features.



4.2 Linear regression: identifying what influences the energy balance 87

# Choosing output and inputs
y = df_day['e_hp']
x = df _day[['tite']]

# Model fitting
res = sm.0LS(endog=y, exog=x).fit()

# Summary of the results in a table
print(res.summary())

# Scatter plot of the fitted model

fig, ax = plt.subplots()

fig = sm.graphics.plot_fit(res, 0, ax=ax)
ax.set_ylabel('Heat pump energy (Wh)')
ax.set_xlabel('$T_i - T_e$ (C)')

plt.show()
OLS Regression Results

Dep. Variable: e_hp R-squared: 0.817
Model: OLS Adj. R-squared: 0.816
Method: Least Squares F-statistic: 670.2
Date: Wed, 01 Apr 2020 Prob (F-statistic): 3.30e-57
Time: 13:52:50 Log-Likelihood: -923.13
No. Observations: 151  AIC: 1848.
Df Residuals: 150 BIC: 1851.
Df Model: 1
Covariance Type: nonrobust

coef std err t P>[t]| [0.025 0.975]
tite 13.2377 0.511 25.888 0.000 12.227 14.248
Omnibus: 64.945 Durbin-Watson: 0.389
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 160.288
Skew: 1.857 Prob(JB): 1.56e-35
Kurtosis: 6.417 Cond. No. 1.00
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.

The table displays the results of the linear regression fitting by ordinary least squares. Some
indicators are useful to judge if the model sufficiently explains the output data, or if some input
features are redundant.

* The t-statistic and p-value indicate whether an input has a significant influence on the input:
P>|t| should be close to zero, meaning that the null hypothesis should be rejected. In this
case, the only input is relevant.

* R-squared measures the goodness of fit of the regression. 0.817 is a rather low value, which
hints that the output should be explained by additional features in the model.

* AIC and BIC will be used to compare several models. A lower value is preferred.

* A low Durbin-Watson statistic suggests a high autocorrelation of residuals, which means that
the model structure is inappropriate.
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The plot confirms that the data is not solely explained by a linear function of (7; — T,), and the

model should be improved.

Complete model

Now we can try a more complete linear regression model, which matches the full model described

by Eq. 4.6

enp = ar(Ti = To) + aa(Ti = Tg) + aslior + as(T; = Ty) + aaVius (T, — T2

(4.8)

This model has five inputs, which we defined as functions of the columns of the original dataset.

# Model definition and fitting

y = df _day['e_hp']
x = df_day[['tite', 'titg',
res =

print(res.summary())

li_
sm.0LS (endog=y, exog=x).fit()

sol',

'tits',

'vtite']]

OLS Regression Results

Dep. Variable: e_hp R-squared: 0.866
Model: OLS Adj. R-squared: 0.861
Method: Least Squares F-statistic: 188.1
Date: Wed, 01 Apr 2020 Prob (F-statistic): 8.93e-62
Time: 13:52:50 Log-Likelihood: -899.85
No. Observations: 151 AIC: 1810.
Df Residuals: 146  BIC: 1825.
Df Model: 5

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

tite 22.3649 2.203 10.151 0.000 18.010 26.719
titg 1.2207 5.845 0.209 0.835 -10.332 12.773
i_sol -0.3868 0.202 -1.917 0.057 -0.785 0.012
tits -8.2306 3.605 -2.283 0.024 -15.354 -1.107
vtite -0.1931 0.710 -0.272 0.786 -1.596 1.209
Omnibus: 28.379 Durbin-Watson: 0.585
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Prob(Omnibus) : 0.000 Jarque-Bera (JB): 38.606
Skew: 1.066  Prob(JB): 4.14e-09
Kurtosis: 4.263 Cond. No. 97.1
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.

The R-squared has improved, and the AIC and BIC criteria have decreased: this model seems
to be a better choice than the first one.

Two input variables however have a very high p-value: (7; — T, ) and V,,,(7; — T,). This suggests
that the heat transfer between the heated space and the garage, and the wind, have little impact
on the energy consumption of the heat pump. We can simplify the model by removing these two
features:

df __day['e_hp']

df _day[['tite', 'i_sol', 'tits']]
res = sm.0LS(endog=y, exog=x).fit()
print (res.summary())

y
X

OLS Regression Results

Dep. Variable: e_hp R-squared: 0.866
Model: OLS Adj. R-squared: 0.863
Method: Least Squares F-statistic: 317.5
Date: Wed, 01 Apr 2020 Prob (F-statistic): 3.04e-64
Time: 13:52:50 Log-Likelihood: -899.93
No. Observations: 151 AIC: 1806.
Df Residuals: 148  BIC: 1815.
Df Model: 3

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

tite 22.4237 1.783 12.573 0.000 18.899 25.948
i_sol -0.3878 0.189 -2.050 0.042 -0.762 -0.014
tits -7.7897 2.601 -2.995 0.003 -12.930 -2.650
Omnibus: 27.272  Durbin-Watson: 0.591
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 36.240
Skew: 1.048 Prob(JB): 1.35e-08
Kurtosis: 4.170 Cond. No. 46.0
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.

With fewer dimensions, the AIC and BIC criteria have decreased. Furthermore, the R-squared
was not impacted by the removal of two features, suggesting that they were indeed not influential.

This model seems to be a decent compromise, although some influences still appear to be
missing.
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Adding features

Eq. 4.6 includes the influences that we assumed the most relevant to the energy consumption of the
heat pump. The data may contain some additional explanatory variables, which may help predict
ey outside of this formalisation. For instance, the energy for DHW production e4p,, and other uses
eorher indicate occupancy, which could be correlated to ej,),.

y = df_day['e_hp']
x = df _day[['tite', 'titg', 'tits', 'e_dhw', 'e_other']]
res = sm.0LS(endog=y, exog=x).fit()

print(res.summary())

# Scatter plot of the fitted model

fig, ax = plt.subplots()

fig = sm.graphics.plot_fit(res, 0, ax=ax)
ax.set_ylabel('Heat pump energy (Wh)')
ax.set_xlabel('$T_i - T_e$ (C)')
plt.show()

OLS Regression Results

Dep. Variable: e_hp R-squared: 0.909
Model: OLS Adj. R-squared: 0.906
Method: Least Squares F-statistic: 292.1
Date: Wed, 01 Apr 2020 Prob (F-statistic): 3.87e-74
Time: 13:52:50 Log-Likelihood: -870.33
No. Observations: 151 AIC: 1751.
Df Residuals: 146  BIC: 1766.
Df Model: 5

Covariance Type: nonrobust

coef std err t P>[t]| [0.025 0.975]

tite 23.4624 1.657 14.157 0.000 20.187 26.738
titg 19.3457 4.825 4.010 0.000 9.810 28.881
tits -10.3815 2.062 -5.035 0.000 -14.457 -6.306
e_dhw -2.0580 0.429 -4.796 0.000 -2.906 -1.210
e_other -0.3216 0.083 -3.890 0.000 -0.485 -0.158
Omnibus: 10.411  Durbin-Watson: 0.832
Prob(Omnibus) : 0.005 Jarque-Bera (JB): 10.964
Skew: 0.659  Prob(JB): 0.00416
Kurtosis: 3.085 Cond. No. 203.
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is

correctly specified.

Using the same indicators as before, it seems that the model has been improved again. The
graph seems to confirm this result.

As a further improvement, we could suggest using qualitative features such as the day of the
week. The energy signature (see Sec. 4.1) shows that in some buildings, this information is very
relevant on the energy use. This building is however a house, with probably less difference between
week days and week ends than in office buildings.
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R) This section is a summary of the article published in [RRO13].

Most of the time, the inverse problem of parameter characterisation is formulated supposing
an unbiased model [MJP11b]. According to this hypothesis, there exists a set of parameter values
that will allow the model to accurately simulate reality, and the only deviation between its output
and experimental observations is measurement noise. This hypothesis is exceedingly optimistic,
especially when models used for the characterisation of building thermal behaviour are simplified
resistor-capacitor (RC) structures [Jan16a]. Accounting for modelling approximations is essential
for the legitimacy of calibrated models and the interpretability of their parameters. One possible
way to do so is using stochastic differential equations, solved with a Kalman filter for the estimation
of states [SS16a]. Another option for the quantification of model uncertainty is to calibrate a
discrepancy function in an iterative model updating procedure [AAC12; KOOI].

The literature offers many applications of parameter estimation and forecasting with stochastic
models [AMHO00; BM11; KMJ04; MH95], but no direct comparison with their deterministic
counterpart. According to [KMJ04]: stochastic models give more reproducible results and less
bias, because random effects due to process and measurement noise are not absorbed into the
parameter estimates but specifically accounted for by the noise terms. Separately, [BO14] stated
and demonstrated that an analysis that does not account for model discrepancy may lead to biased
and over-confident parameter estimates and predictions. The target of this section is to show this
effect.

The theory of stochastic state space models and Kalman filtering was presented in Sec. 2.3.2.
The following describes the questioning, case study and results that were published in [RRO18]

Questioning and case study
The question
The calibration of building energy models, such as simplified RC structures, can be done either in
the aim of physical parameter estimation or the identification of a system for predictive purposes.
In both cases, the user starts by formulating the model in continuous time (see Eq. 2.9 and 2.10 for
an example), which after discretisation resembles Eq. 2.14. This formulation can then be used for
states estimation, parameter estimation and forecasting.

The process noise w; is often not included in the system equation, although RC models are
very simplified. This means that a potentially important source of error is neglected in an inverse
problem, where each error may have important consequences on results.
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The question this paper aims to answer is: what are the effects of accounting for modelling
uncertainty on the results of parameter estimation and indoor temperature forecasting? In
order to answer it, model calibration was carried with seven separate training datasets from the
same building, operating in similar conditions (described below) from May to August 2017. The
same RC model structure was thus calibrated seven times, resulting in seven estimates (posterior
PDF’s) for each parameter of the model (resistances, capacitances, effective solar aperture). Results
will be presented in two parts:

* Parameter estimation: estimated parameter values and their uncertainty intervals are com-
pared across all datasets, in order to show whether using a stochastic rather than deterministic
model result in more robust (consistent) parameter estimates;

» Forecasting: each dataset is used alternatively as a training set or a test set, in a form of
7-fold cross-validation, in order to assess the predictive bias and variance of deterministic
and stochastic alternatives.

In the stochastic modelling situation, the procedure for parameter estimation and forecasting
follows the steps presented in Sec. 2.3.2. In the deterministic case, the system noise w; is removed
from Eq. 2.14: states x,.y are single point values and no Kalman filtering is applied. The objective
function of the parameter estimation problem is simply the sum of squared errors, as described
above.

Case study: Armadillo Box

The experimental test cell used in this study is called the Armadillo Box. It is a demonstration
building of 42 m? floor area, designed for the 2010 European Solar Decathlon by the ENSAG-
GAIA-INES team. The envelope is a light wood framed construction with integrated insulation.
Heating and cooling is performed by a “3 in 1" heat pump, and photovoltaic solar panels provide
recharge for electric vehicles. A large glazing area on the southern facade ensures solar heat gain in
winter, while shadings have been sized to reduce summer overheating. The building considered
in this study, shown on Fig. 4.1, is a copy of the original Armadillo Box, built on the INES test
facilities to investigate its performance on the long term. A technical room on the northern side
hosts monitoring equipment.

Figure 4.1: View of the southern facade and floor plan of the Armadillo Box

The building is monitored by a variety of sensors, but the present study only uses records
of indoor temperature and prescribed heating power, in addition to weather data. The indoor
temperature profiles used here have been averaged over several sensors distributed in the living
space. Seven separate experimental sequences of four days each were used in this study. One of
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these test sequences is shown on Fig. 4.2: Fig. 4.2(a) shows indoor temperature 7;,, adjacent room
and outdoor temperature T,,,; Fig. 4.2(b) shows the indoor heat input P, and global solar irradiance
on a southern surface I,;.
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Figure 4.2: One measurement sequence in the Armadillo box

: Heating (2 kW) Weather

Sequence Duration (h) . _ _

Start (h) Duration (h) | Ty (C) L0 (W)
D4 72 0 24 23.5 320.6
D5 90 18 24 21.5 256.5
D6 90 18 24 20.0 286.9
H1 100 3 48 16.3 225.4
H2 116 20 48 18.6 278.4
K1 90 18 24 17.4 207.3
K2 90 18 24 21.1 272.8

Table 4.2: Description of the test sequences

The test sequences resemble sollicitations imposed in similar studies [MPR12]. Each sequence
has a duration of 3 to 5 days, and includes a period of imposed indoor heating of 2 kW, for either 24
or 48 hours. Heating may start right after the beginning of the test, or after a period of free-floating
temperature. Tab. 4.2 shows the conditions of each sequence, as well as its average outdoor
temperature and solar irradiance. It is important to notice that all sequences are very similar: a
single model, if calibrated correctly, should be able to reproduce all of them accurately. The point
of the paper is to check if deterministic and/or stochastic models indeed show such a robustness.

Modelling
The questioning stated above supposes that a given RC model structure is trained twice from each
data set: once in a deterministic formulation, once in a stochastic formulation. The robustness
of each formulation is assessed by comparing parameter estimates arising from all datasets. An
additional dimension is however added to the problem by applying the methodology to three types
of RC models.

It seems reasonable to think that the lack of system uncertainty would be more problematic
for simple models than for complex models: in an overly simplified model, such as one with a
single thermal resistance R and capacitance C, modelling errors should be larger than in a model
with close to no bias. As a result, we expect that if the system error w; is neglected (deterministic
setting), parameter estimates should be highly inconsistent across different training datasets. We
expect this effect to be reduced with models of higher complexity and lower bias.
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An additional dimension is added to the problem by investigating the above questioning with
several levels of model complexity: 1R1C, 2R2C, 3R3C. The procedure begins by writing Eq. 2.12
and 2.13 for a given model structure (1R1C, 2R2C or 3R3C) and modelling type (deterministic or
stochastic). Some variables are common to all situations:

T
u(t): |:T0ut Lo Ph} 4.9)
y(t) = [Ti } (4.10)
v(t) ~ A (0,7) 4.11)
Other variables depend on the model structure and are listed on Tab. 4.3.
Model IR1C 2R2C 3R3C
T T
T(r) 7] 1 non o7
[ 1 1
— 0
1 1 R\C, RiC,
Ao _ 1 R,C, R.C, 1 _ 1 B 1 1
R C 1 b1 R, RiCy Ry Ry
RC;  RG RG 0 1 BN N
L Ry R,C3  R3Cs |
- R
0 _
0 LI G G
B 1 ki 1 c, C 0 ko 0
0 c 1k C
RiC G G 2o G
R,Gy G L & 0
LR3C3 G5 i
Co 1] 1 9] 10 0
g 0 a0 0
Q. [q%] ) 0 ¢ 0
0 g4 2
0 0 g5

Table 4.3: Matrices of the RC state-space models in continuous form

* Each model has a number of temperature nodes; the Cy matrix indicates the position of the
observed (indoor) temperature. In each model, the temperature 77 is observed.

* The 2R2C and 3R3C models respectively have one and two unobserved temperature states.
Their initial states {75,730} are unknown parameters of the problem.

* C; is the heat capacitance (J.K™!) of state T}, k; is its equivalent solar aperture (m?) and ¢; is
the standard deviation of the system error associated to it.

* The models are written with the assumption that the system error covariance matrix Q. is
diagonal. The standard deviations of system errors g; and measurement error r are considered
unknown, and will be inferred along with the other parameters of the models.

As an example, the lists of all unknown parameters of the 2R2C model structure, in the

deterministic and stochastic cases respectively, are:

O5koc = [Rl Ry Ci G ki ky Ty r} 4.12)
eﬁ:ﬁ)zc:[Rl Ry Ci G ki ko Tho r qi 612] (4.13)

Once written in continuous form, each system undergoes discretisation (see Sec. 2.3.2). Each
resulting discrete system is trained in a combination of the following settings:
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* Deterministic or stochastic modelling;

¢ 1R1C, 2R2C or 3R3C model structure;

* One of 7 training data sets.
This results in 42 sets of posterior PDFs p(0]y;.y) that were calculated by the MCMC algorithm.
The questioning of the paper is answered in two sections: Sec. 4.3.2 compares these PDFs to show
the ability of stochastic and deterministic models for robust parameter estimation; Sec. 4.3.2 uses
these estimated parameters to assess each model’s ability to predict the indoor temperature in test
datasets that are different from their training datasets.

Results and discussion
Model fit

Before showing the results of the robustness tests, let us first ensure that the selected model
structures may capture the dynamics of the variable they aims at predicting (indoor air temperature).
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Figure 4.3: Proof of sufficient model complexity

As an example, Fig. 4.3(a) displays the indoor temperature measurements of a dataset, and
prediction by the three model structures, calibrated using this dataset for training, in a deterministic
setting (the system uncertainty is neglected). It is clear that the 1R1C model is unable to reproduce
the dynamics of the indoor air temperature, while the other two models have a sufficient number of
degrees of freedom. The 3R3C is especially indistinguishable from measurements.

Showing the fit of stochastic models is less informative since the Kalman updating step always
ensures that model predictions will fit measurements. Assessing whether a model may describe the
dynamics of a system is done by examining prediction residuals or their auto-correlation function
(ACF). Fig. 4.3(b) shows the ACF of residuals between observations and each of the predictions
from the 3 models structures, in a stochastic setting. A low ACF is a necessary condition for
parameter estimates to be reliable [BM11]: the 2R2C model has very few occurences of an ACF
value above the 0.1 threshold, while the 3R3C model has none.

This analysis is not a careful model selection procedure: it merely shows that there is no need
to add degrees of freedom to the models under investigation in this study. Examples of RC model
selection procedures include for instance [BM11].

Parameter estimation

Heat loss coefficient

The first relevant indicator, that can be compared across all model structures, is the global heat loss
coefficient (HLC) of the building. In each model structure, its PDF is obtained by reciprocating the
sum of the PDFs of all resistances. The HLC is therefore comparable across all model structures:
its estimate is expected to be consistent.
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Figure 4.4: Estimation of the heat loss coefficient

Fig. 4.4(a) compares the HLC estimated using deterministic models. Each box is the posterior
PDF of the HLC from one model structure, trained with one data set. The left part shows the PDFs
obtained using a 1R1C model, trained by each of the 7 training data sets. The last box of this
series shows the HLC estimated by using all data sets altogether: this value is supposedly the most
realistic of the series, since it uses seven times more information than each of the other estimates.
The center of Fig. 4.4(a) compares HLC estimates from the deterministic 2R2C model, and the
right part compares estimates from the 3R3C model.

Several observations can be drawn from Fig. 4.4(a) only, before comparing these results to the
stochastic alternative. The first observation is a high inconsistency of the HLC parameter estimated
with the same model but from different data. This is especially true in the case of the 1R1C structure:
this model is overly simplified, and its inadequacy is not included in its formulation. The median
value of posterior PDFs may span from 57 to 92 W/K. This means that using a single data set of
a few days of observation offers no guarantee of accurate results for parameter estimation. This
problem is mitigated, although still observable, in the case of the 2R2C and 3R3C models, which
are able to mimic the behaviour of the building more appropriately. There is still a dispersion in the
HLC estimation results.
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The second observation is the narrowness of confidence intervals. By using a supposedly
unbiased model for inference, the only admitted discrepancy between model output and observations
is measurement noise. This leads to an overconfident parameter estimation, especially with a higher
model complexity. More importantly, the confidence intervals of HLC do not overlap from one
training data set to another. This means that these confidence intervals cannot be trusted, since
the point of confidence intervals is to include all likely solutions. The issue is that they have been
calculated by neglecting part of the uncertainty of the problem.

Fig. 4.4(b) shows the same display of results, if the model used for inference is stochastic and
employs a Kalman filter for the estimation of states. Each box is the posterior PDF of the HLC from
one model structure, trained with one data set. The main difference with the deterministic setting is
that confidence intervals are considerably larger. A likely explanation for this phenomenon lies in
the principle of Bayesian filtering: at each time step, states are updated as a compromise between
predictions and observations. The profile of one-step ahead predictions is more likely to match
observations, resulting in a high likelihood for a larger range of parameter values. Since the model
is known to be wrong, the inference algorithm admits more parameter values as likely to be true.
As a result, confidence intervals are very conservative, especially for such simplified models (it
should be noted that Fig. 4.4(b) shows no clear influence of the model complexity).

This should not be seen as an unsatisfactory result. The estimated HLC is now more reliable,
and more importantly, its estimation is robust: indeed, there is an overlap between PDFs obtained
from separate datasets. This means that the “true” value of the HLC may be included in the results
of all trainings. Additionally, in each model structure, the PDF of the HLC estimated using all
datasets overlaps each PDF from individual datasets. This is not the case when a deterministic
model is used.

Heat capacitance

The global heat capacitance of the building is now investigated. It is the sum of the estimated
values for all capacities of each model (they respectively have one, two or three). This variable
is known to be model-dependent: we should not expect it to hold the same value across different
model structures.

Fig. 4.5(a) and 4.5(b) show all PDFs of the global capacitance, estimated by using deterministic
or stochastic models, respectively. The comparison allows the same discussion as the above
investigation on the HLC:

* When neglecting system error in the model formulation (Fig. 4.5(a)), parameter estimation
results are not consistent across training datasets. Important uncertainties are overlooked,
preventing a robust model calibration. With a given model structure, the confidence intervals
from separate trainings do not overlap: a single training offers no guarantee of proposing the
correct value of the thermal capacity.

* When accounting for system error (Fig. 4.5(b)), the estimation of the thermal capacity by
each model structure is more reproducible and reliable.

The latter observation is contradicted by two trainings of the stochastic 3R3C model, which resulted
in capacity PDFs that hardly overlap other trainings. A possible explanation is a low identifiability
of series of thermal capacities in RC models.

Measurement noise
The third indicator, used here to observe the relative robustess of deterministic and stochastic
modelling in parameter estimation problems, is the standard deviation of observation noise r. Recall
that observation noise appears in the measurement equation, regardless of whether system noise is
considered or not. Its standard deviation r is an unknown parameter of our models.

The advertised inaccuracy of temperature sensors used in the experimental study is 0.15°C: the
estimates of » should be lower than this value.



Q8 Chapter 4. Practical applications

3.0

= D4

o5 I D5 é

== D6
= = H =
S = + -
Q
i ——

g - = + =+ %* - =+
G Al =+ =
% 15
: -+
E Fa
= 10 +
g + =

05

0.0

1RI1C 2R2C 3R3C

Model structure

(a) Thermal capacitance estimated with deterministic modelling

3.0 le7

Sequence
I D4
25 [ D5
[ D6 ‘
I H1
H2
2.0
| K1
I | K2
' =+
¢
¢+

0.5

Total heat capacitance (J/K)
-
(9]

0.0
1R1C 2R2C 3R3C
Model structure

(b) Thermal capacitance estimated with stochastic modelling

Figure 4.5: Estimation of the total thermal capacitance

Fig. 4.6(a) shows the estimation of r by deterministic models. The deterministic 1R1C model
estimates its value between 1 K and 2 K, which is much higher than expected. This observation
may be given the following explanation: when system error is neglected, the only possible deviation
between observations and model predictions is the measurement noise. In reality, this deviation is
caused by modelling errors, ignored by our model: the inference algorithm attributes the entirety of
the deviation to measurement errors and increases the estimated value of r. Deterministic 2R2C
and 3R3C models overestimate r as well, although by a lower amount. Again, confidence intervals
of this parameter do not overlap across separate trainings.

Fig. 4.6(b) shows the estimation of r by stochastic models. This estimation is more satisfactory
in terms of the absolute value of r, and in terms of robustness: all trainings overlap within a realistic
range.

Forecasting

The decision of including system error in the formulation of a model considerably increases the
confidence intervals of parameters estimated by inverse methods. The precision of parameter
estimation is not increased, but its robustness is much higher. We now wish to observe if this
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Figure 4.6: Estimation of the measurement noise standard deviation

decision has a similar impact on the forecasting capability of models.

Once a model has been calibrated with a training dataset, its forecasting accuracy and robustness
may be assessed using another observation period as test set. Fig. 4.7 shows this test on two
examples of training-test combinations: a successful prediction (Fig. 4.7(a)) and a less successful
one (Fig. 4.7(b)). The predictions of indoor temperature by stochastic and deterministic 3R3C
models, trained with a dataset, are compared to measurements of another set. Since parameter
estimates are posterior PDFs, each prediction simulation is run n = 100 times by sampling the
posterior: this results in confidence intervals on forecast profiles. Predictions by the stochastic
model include the additional uncertainty on the states.

Fig. 4.7 shows that the stochastic model, where states are uncertain, predicts the indoor
temperature with a much higher uncertainty than the deterministic model. In the latter, the only
source of uncertainty is the variability of the parameter posterior. The former accounts for model
inaccuracy in the forecast.

Next, a quantitative assessment of prediction accuracy and robustness is proposed, with a
method inspired from k-fold cross validation.

* Prediction accuracy is measured by the cross-validation (CV) index, which is computed
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Figure 4.7: Examples of forecast by the 3R3C model, either deterministic or stochastic

by averaging test errors [Gar+13]. Using a model trained with the learning dataset i, we
denote MSE; the averaged test error of this model over all test sets. The CV index is then the
average of all MSE; values over all D = 7 datasets.

1 1Y
MSEi= 53 | 5 X (n—Cx) o
i t=1 (train=istest=J)
1D
s, 4.1
cv Di; S 1

* Prediction robustness is measured by an index denoted PR. Let us denote PR; ; the percent-
age of measurement points in the test dataset j, that fall inside the 95% confidence intervals of
the predictions calculated by a model trained with dataset i. The global prediction robustness
of one model is the averaged value of this indicator over all possible dataset combinations:

PR:li LZPR-- (4.16)
D&\D-1 " ‘

i=1 A

Prediction accuracy: CV index (K?)

Deterministic Stochastic
IR1C 6.54 5.00
2R2C 0.82 1.99
3R3C 0.86 1.10
Prediction robustness: PR index
Deterministic Stochastic
IR1C 6% 56%
2R2C 8% 63%
3R3C 8% 72%

Table 4.4: Assessment of prediction accuracy and robustness by each model structure; a lower CV
score is better, a higher PR score is better

Results show that including the system error in the model formulation does not increase the
prediction accuracy, but considerably increases its robustness: when forecasting with a stochastic
model, the confidence that the real process is within confidence bounds of the prediction can be
higher.
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There is no apparent incidence of the test conditions on the accuracy of predictions. The
duration of the training sets, duration of heating input, and weather conditions, do not seem to
predetermine which training sequence will yield the most robust model. These sequences are indeed
very similar: the causes for prediction inaccuracy should be sought among phenomena that have
not been observed, and not been considered by the simplified models.

Summary

Here is a summary of the results of both the parameter estimation and the forecasting investigations:
* Using a stochastic model in an inverse problem significantly increases the uncertainty of
estimated parameters. The estimates are less confident, but more reliable as a consequence,

since their confidence intervals overlap when using several training datasets separately.

* The uncertainty bounds of a parameter identified through a stochastic model give an insight
of its identifiability. This allows pointing out which experimental training datasets are most
informative, i.e. bring the most information into the parameter estimates.

* Using a deterministic model supposes that the model is unbiased. This hypothesis is especially
inappropriate in the case of simpler models such as IR1C. As a consequence, there is a larger
variability of parameter estimates from separate training datasets. This problem is attenuated
when the model complexity is increased.

* Predictions by stochastic models are not more precise, but more cautious: their confidence
bounds are larger than from deterministic models. As a result, they are coherent with most of
the validation data, whereas deterministic models are not.

Latent force models: performance prediction of occupied buildings

This section is a summary of a future article, not yet published as of the writing of this report
(April 2020).

The process noise included in the linear stochastic differential equations (Eq. 2.12) only covers
some types of modelling approximations. It cannot describe significant systematic errors or missing
influences, and does not compensate for an overly simplified model structure [Gho+15]. As a
consequence, the model complexity must be increased to an unpractical point in order to meet
validation criteria (uncorrelated prediction residuals) and provide accurate predictions. Gaussian
Processes (GP) [Ras04] were proposed to account for more uncertain, non-linear or unobserved
phenomena that an RC model does not explicitely include. Two alternatives were proposed to
include GP’s in energy assessment models. The first approach was named Bayesian calibration by
[KOO1] and refers to using a GP as a surrogate model to reproduce a reference model, then training
a second GP as the discrepancy function between this model and observations, then evaluating the
posterior distribution of calibration parameters. Following this approach, [AAC12] investigated
the question of the identifiability of calibration parameters. The first application of this method to
building energy performance assessment was [HCA12] who calibrated the parameters of a building
simulation model on monthly gas consumption data. [CM18] give a summary of publications using
Bayesian calibration in building energy. The second approach is to use GPs to simulate dynamic
systems through a state-space representation [Sol16] and include them as a non-observed input into
a state-space model. This is the principle of Latent Force models [SAL18], which were first used
for thermal modelling of buildings by [Gho+15], and also proposed in the present section.

The principle of Latent Force Models is described in Sec. 2.3.3. The present section displays
preliminary results concerning a case study, where they were used to predict the energy performance
of a house despite its occupancy.
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Case study: twin houses

The dataset used in this case study was generated within the IEA EBC annex 71 and made freely
available by the Fraunhofer Institute for Building Physics IBP. Originally intended to validate the
performance of Building Energy Simulation (BES) tools in a two-stage, blind and open process
[Ker+20]. Since this dataset is accompanied by a detailed description of the data and the experiment,
including measurement uncertainty and baseline measurements as part of the quality control, this
data set can be used for numerous other purposes.
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Figure 4.8: Ground and attic floor plan of the Twin Houses

As can be seen in Fig. 4.8 the experimental setup of both houses includes the ground floor and
the attic while the cellars are heated to a constant temperature as a boundary. In all rooms the air
temperatures in four heights, the globe temperatures and the heat inputs are recorded together with
many other parameters related to the exterior climate, the heating and the ventilation system. This
experiment is the successor of the IEA EBC annex 58 BES model validation experiment [Ker+20]
that is also freely available [Jan16a]. It is extended from the annex 58 experiments by including
the attic space, using underfloor heating and an air source heat pump in one building and adding
synthetic, probabilistically acting users [FK16; FK17]. These synthetic users influence the heatings’
set points, adding internal heat and moisture gains and operating external windows and internal
doors. Baseline measurements, including a coheating test, served as a quality check to ensure both
Twin Houses indeed have an identical behavior.

The entire Annex 71 experiment consists of seven different phases including free floating
period, a period with random (PRBS) heat pulses, a coheating experiment suitable for analyzing the
HTC and three "user” periods were the houses are occupied by synthetic users providing different
degrees of detailed interactions. In the presented paper the dataset of the user 1 phase is used. In
this phase of the experiment both Twin Houses were heated to the same constant set temperature
with a night setback. The synthetic users’ interaction with the building during user 1 is limited
internal heat gains with a probabilistic element.

The user 1 phase dataset has been split in two parts. The period from the 26th December 2018
at midnight to the 25th January 2019 at 10:30 am is used for the identification and after this period,
seven days (until the 1st February 2019) are used for the model prediction. The data are collected
at one minute interval but provided as ten minutes averages.
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4.4.2 Performance assessment despite unmeasured influences
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Figure 4.9: Third order thermal network

A third-order model shown by Fig. 4.9 is used. &y, is the total thermal power delivered by
the underfloor heating system, estimated from water temperature measurements; 7, is the outdoor
temperature; ®; is th global solar radiation measured on a horizontal surface. The indoor space
has two additional heat sources: internal heat gains ®; (W) and heat supplied by the mechanical
ventilation @, (W).

Although the value of internal heat gains (from occupants and various appliances) ®; is known
in the controlled Twin houses experiment, it is hardly measurable in practice. The purpose of this
section is to demonstrate the use of LFM for estimating the thermal properties of the occupied
building. Two versions of the model were trained with the training data subset:

* A regular RC model, shown by Fig. 4.9 but missing the influence ®;.

* A LFM, where a pseudo-periodic latent force is set to influence the indoor air temperature,
in an attempt to compensate and estimate this missing influence: see Sec. 2.3.3 for the
implementation.

Once trained, both models are compared in terms of: accuracy of the indoor temperature
prediction relatively to the validation dataset (see Fig. 4.10); estimation of HLC compared to the
reference value (see Tab. 4.5). Then, the estimated latent force is compared to the influence it was
supposed to compensate, since it was measured by the experiment: this is shown by Fig. 4.11

g-) 24

g

-]

-E 22

)

o

£ 20

o}

4+

S 18

_8 —— Measurement

k= —— RC model
16 LFM

01/2601/2701/2801/2901/3001/3102/01

Figure 4.10: Indoor temperature prediction with regular RC model and LFM
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Fig. 4.10 shows that the trained RC model, where the influence ®; is missing, already has a
very satisfactory prediction ability. The addition of a latent force into the formulation still improves
the accuracy, with a RMSE index going from 0.524 K to 0.289 K (see Tab. 4.5). The precision
however remains similar. The ACF of the RC model is satisfactory as well, and is made even higher
by the LFM.

HTC (W/K) Validation

mean std RMSE ACF CCF(®;))
Reference 109
RC 6448 221 0.524 0.956 0.719
LFM 69.27 571 0.289 0.984 0.979

Table 4.5: Comparison of RC and LFM results with a missing influence

The value of the HTC estimated by both models, and compared with a reference value calculated
according to DIN V 18559, are shown on Tab. 4.5. The accuracy of the estimation is not
satisfactory, as HTC falls far from its reference value. By missing an indoor heat input, the RC
model underestimates the global heat input inside the building, and therefore also underestimates
HTC. The LFM, where the missing influence is estimated, only slightly improves the accuracy of

HTC.
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Figure 4.11: Estimation of the missing indoor heat gains by the LFM

The reason for such a small compensation of HTC by the LFM can be seen on Fig. 4.11,
showing the measured profile of ®; that was hidden from the models. The LEM correctly estimates
its dynamics, but with a constant offset: its mean value is close to zero, which explains why the
HTC is underevaluated. The latent force should be corrected in order to only allow positive values.

This study shows some preliminary results concerning the capabilities of LFM for the perfor-
mance assessment of buildings: they seem fit for the estimation of missing influence that have a
high impact on the model output, especially when these influences display some periodic behaviour.
However, the estimation of physical quantities such as the HTC is not necessarily improved by
them: further investigation is required.

4.5 Real time parameter estimation with Sequential Monte Carlo

R) This section is a summary of the article published in [RJIC19].
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Parameter estimation is typically performed off-/ine: measurements of indoor and outdoor
conditions are first carried in a test building, and data is processed after the experiment in a single
batch. An interesting challenge is to carry parameter estimation on-l/ine, during the observation
period: starting from an initial guess for parameter values, these estimates are updated sequentially,
every time a new observation becomes available.

There are several motivations for this: first, it would allow using the measurement period
for computations, thus reducing the total time of the procedure [RG17]. It would also be a way
to make use of the emerging wireless energy monitoring technology: smart meters, wireless
sensor networks, etc. With frequent data collection and remote transfer, either off-line and on-line
analysis can be performed non-intrusively during the monitoring period. The off-line alternative
however requires restarting calculations from the beginning of the measurement period, which
can become problematic if a frequent update on parameter estimates is expected. A second, more
important advantage of on-line estimation lies in the amount of information gained from the
experiment. Parameter estimates are to be updated after every new observation: this will allow
directly observing which phenomena “bring information” to the parameters, by correlating the
reduction in their estimation uncertainty with observed events. Such a thorough diagnosis can be
useful for fault detection as well, particularly when the necessary length of the measurement period
is not known a priori.

Bayesian inference offers the possibility of on-line estimation with Sequential Monte-Carlo
(SMC) methods [DGAOO]. Originally developed for the sequential estimation of states [Han70],
SMC was later adapted to state and parameter estimation [Kan+15; LC98]. Building physics appli-
cations are scarce and very recent [RG17], but may become more common due to the motivations
listed above.

The present paper applies SMC for the on-line estimation of the heat loss coefficient (HLC) of
a test cell. Starting from a highly uncertain prior knowledge of HLC, the target is to dynamically
observe what leads its estimation to narrow down to a more precise value. The identifiability of HLC
regarding available data is then discussed. Sec. 4.5.1 presents the test cell the RC model chosen
to simulate it. Sec. 4.5.2 shortly describes the SMC algorithm for on-line Bayesian parameter
estimation. Results are then showed and discussed on Sec. 4.5.3.

Case study: Round Robin Test Box
Experimental setup

The present study uses measurements that were carried in the Round Robin Test Box (RRTB),
within the framework of the IEA EBC Annex 58 [Jim16]. This experimental test cell, shown by
Fig. 4.12 has a cubic form, with exterior dimensions of 120x120x120 cm?. The floor, roof and wall
components of the box are all identical and have a thickness of 12 cm, resulting in an inner volume
of 96x96x96c¢m>. One wall contains an operable wooden window with overall dimensions of 71x71
cm? and a glazed part of 52x52 cm?. The double glazing has a U-value of 1.1 W/m?K and g-value
of 0.63. Numerical simulation [Jim16] has estimated the overall HLC of the box to a target value of
4.08 W/K, assuming constant standard surface heat transfer coefficients. This value presents an
uncertainty in the range 3.49-4.14 W/K due to variations produced by the presence of a thin air or
glue layer between the different material layers, or approximations in the estimation of surface heat
transfer coefficients depending on wind and surface temperature. This range will serve as reference
to check the validity of the results below. The total solar aperture of the box was estimated at 0.162
m?.

The test box was installed outdoors, in the LECE laboratory at Plataforma Solar de Almeria,
in the South East of Spain. Experiments were carried during a 43-days period in the winter of
2013-2014. Measurements used in this study are: indoor temperature (which is the average of two
type T thermocouples placed inside the box), outdoor air temperature, heating power, and global
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Figure 4.13: Measurements of indoor and outdoor temperature, heating power and solar irradiance

horizontal solar irradiance. The box is also equiped with sensors that were not used here: internal
and external surface temperatures of each side, heat flow meters, diffuse horizontal solar irradiance,
wind speed and direction, relative humidity, and horizontal and vertical long wave radiation from
the sky. All sensor types are listed in [Jim16]. All measurements were received with a sampling
time of 1 min, but were then resampled to a time step of 5 min in order to reduce calculation time
without compromising precision.

A period of 12 days was chosen for the present investigation, starting from the 6™ of December
2013 at 00:00. Measurements are shown in Fig. 4.13. The first 6 days will be used as validation data
for the trained model, and the last 4 days as training data. The measured indoor temperature during
the validation period will be compared to the output of the models calibrated with the training data.
This particular partition of the original 12-days dataset is motivated by the following reasons:

* Both the training and the validation dataset comprise a period of free-floating indoor tem-
perature, and a period of controlled indoor heat input. In terms of model calibration, these
boundary conditions are not very informative at first, then become more informative: we
expect to witness their effects on the evolution of the estimation of the heat loss coefficient.
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* The training and validation sets are separated by a short "buffer period" in order to make them
relatively independent from each other. By this precaution, we want to avoid a correlation
between both datasets, that would not guarantee that the trained model is generalizable.

The 3R2C model

In order to estimate its heat loss coefficient (HLC) and other properties, the test box is represented
by a lumped Resistor-Capacitance model. It is a 3R2C model described by:

1 1 1 [ B R R P
L(O| _|"RiCi| RC RiG 0] |&a o ol
. = [
[E(t] 1 L1 | T ) R q(t) | +w()
R RIC Ry R,y C Lso1 (t)
A 1
(4.17)

y(1) = [1 0] [T"(t) (1) 4.18)
——

C

where 7;, T, and T, are the indoor, ambient (outdoor) and envelope temperatures. The envelope
temperature is associated with the thermal mass of the opaque surfaces, and does not represent a
specific coordinate within the envelope. The model has two states 7, (unobserved) and 7; (observed,
shown in Fig. 4.13(a)); ¢ (W) is the indoor heating power; Iy, (W/m?) is the solar irradiance on a
southern vertical plane. A schematic view of the 3R2C model is shown in Fig. 4.14. The choice
of this model structure is motivated by simplicity: in a previous study [RRO18], a 2R2C model
was judged sufficient to describe the dynamics of a very simple mono-zone building. The 3R2C
model is an extension of this model, applied to the RRTB where the influence of the window may
be significant.

e, Tc,

Figure 4.14: 3R2C model

In the continuous state equation (Eq. 4.17), w(¢) denotes a Wiener process that represents
modelling errors with an incremential covariance Q. [MH95], and v(¢) is the measurement error
of the indoor temperature, normally distributed white noise with zero mean and variance R.. The
coefficients of the Q. matrix and R, are considered unknown and will be estimated along with the
other parameters of the model.

The 3R2C model has 8 parameters that enable a physical interpretation of the RRTB: R and
R, (K/W) are two thermal resistances representing heat transfer through the opaque walls; R3 is a
resistance directly linking the outdoor and indoor temperatures, representing heat transfer through
the window; C; and C; (J/K) are thermal capacities and k; and k» (m?) are two solar aperture
coefficients, one for each state of the model. The last parameter is the initial envelope temperature
T,(0): since T, is an unobserved state, its initial value is unknown. In the following, we denote as 6
the vector of these parameters.
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The SMC algorithm

The goal of the on-line parameter estimation exercise is to assess the value of all static parame-
ters of the model, at each time coordinate of the measurement period: the expected output is a
sequence of posterior distributions {p(0|y1,),t € 1...T }, where T is the number of data points in
the measurement period. This sequential estimation is performed by the SMC algorithm.

The SMC algorithm for parameter estimation is an adaptation of particle filtering for state
variables. The foundation of this method is the Importance Sampling paradigm as described by
[CGMO7]: simulating samples under an instrumental distribution and then approximating the target
distributions by weighting these samples using appropriately defined importance weights. The
reader is referred to [CGMO7] and [Kan+15] for a deeper explanation of SMC and its application
to parameter estimation. The method used here is inspired from the Iterated Batch Importance
Sampling algorithm [Cho02]. It is described in Fig. 4.15 and Algorithm 3.

Initialisation For each time step
e(j) ~ p(6) Population of weighted particles Resampling with Rejuvenation Propagate and ngm
(” ~ normalised weights ) ) ) = KF (6, '
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Figure 4.15: Principle of the SMC algorithm

The algorithm starts with the generation of a population of Ng particles drawn from a prior
distribution p(0). Each parameter is assigned an initial state x, and weight. At each time step
t, a Kalman filter computes the states x,< 7) and likelihood L( /) associated to each particle 9,(j ) I
the state-space model (Eq. 2.14) is non-linear, this filter can be replaced by a particle filter: this
approach is known as the SMC? algorithm [CJP13]. By this operation, the population of particles
is updated so that at each time 7 they are a properly weighted sample from p (0|y;.) [CIP13]. After
several time steps, there is a risk that only a few of the initial Ny particles are significantly more
likely than the others and concentrate the majority of the total weight: a resampling step is then
performed in order to generate a new population of particles from the most influencial ones, and a
MCMC rejuvenation step then restore the diversity of particles [Murl3].

Resampling does not occur every time a new observation becomes available, but only when
required: this is measured by the effective number of particles that significantly contribute to the
total weight of all particles [Murl3]. This operation decreases the number of unique particles,
hence the subsequent rejuvenation step that restores diversity. The choice of .4 (,ﬂ,,i,) as the
proposal distribution for the MCMC rejuvenation step was proposed by [Cho02] and ensures a
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Algorithm 3 Sequential Monte Carlo algorithm
1: Initialisation: generate a population of Ng particles, their states and weights
2: forall j € {1..Ng} do

w6 ~p(6)

& xg) ~ p(X)

5: a)éj) =1

6: end for

7: fort =1...T do

8: forall j € {1..Ny} do

9: Resampling

10: {aj,j€1..Ng} <—MULT1NOM1AL<a)t(i)1,j € 1...N9)

11: Rejuvenation by a single MMH step with proposal distribution .4 (,lft,,l , i,,l)
12: <9(1> x(()Jl) 1,LI( )1> <—MMH<6I( 1),x(()t)1,y0, 1)

13: Propagate and weight

14: (x,(’),L( )> < KALMANFILTER (Xt( 7 eV ),y,)

15: where Lt( i) = p (yt|xt71,6,(] )) is the incremential likelihood.
17: end for

18: Normalise weights

19: o )/ Z a)t 1
20: Calculate Welghted mean and covariance of parameters
21 = ij\_’i 1 wt(f)net(/)

. T N NT
22: = levi] wt(j) (et(j) - Ht) <9t(j) - Ivlt)
23: end for




453

4.6

110 Chapter 4. Practical applications

reasonable acceptance ratio while leaving p (6|y;,) invariant. The rejuvenation step makes the
algorithm quite computationally expensive, since the total likelihood of all particles p (y;.|0) must
be recalculated every time resampling occurs. This problem is mitigated by the fact that particles
can be resampled independently, making this effort parallelisable.

Results

The RRTB was monitored for 12 days, 4 of which were used to train a 3R2C model. The model was
trained separately by off-line and on-line Bayesian inference, using the MMH and SMC algorithms.
In order to compare both methods at different points in time, the MMH algorithm was run several
times by using 1 day, 2 days, 3 days or 4 days of training data, respectively.

Both methods used the same parameter prior p(6), which will be displayed along with the
results. It is a Gaussian prior with a wide support for each of the individual parameters. Indeed, we
found that using a uniform prior could compromise the convergence ability of each algorithm in the
case of parameters with low identifiability.

R) The on-line and off-line estimation results of the heat loss coefficient and solar aperture of
the box are shown below. Theoretical values of these characteristics [Jim16] are available for
comparison. We discuss the events that bring information to the estimates. More results on
the same work is shown in [RJC19].

One of our targets is to determine which specific part of the data drives the parameter estimation
towards more confident values. Therefore, Fig. 4.16(b) and 4.16(c) show the estimation results of
HLC and the total solar aperture k by comparing them with measurement data in Fig. 4.16(a). The
blue line and blue area show the average and 95% confidence interval of the posterior distributions
obtained by SMC at each time coordinate. The box-and-whisker plots show the prior distribution at
t = 0 in grey, and the four posterior distributions obtained by MMH using either 1, 2, 3 and 4 days
of measurements, in red.

The 95% confidence interval of a parameter estimated by either SMC or MMH narrows down
progressively, as data is sequentially added to the problem. A quick, stepwise decrease is an
indicator of an event that “brings information” to the parameter. Both the HLC and the k properties
have a similar behaviour in this matter: their confidence intervals are first narrowed down during
the first day of measurements, as the solar irradiance rises. Then, a high information gain occurs
as indoor heating is turned on, on the third day. It is general knowledge that the parameters of a
building energy model are hardly identifiable without a heat source. This study however quantifies
the effect of this input signal on the parameter uncertainty.

A fair match can be seen between results from both MMH and SMC algorithms: the distributions
mostly overlap.

The SMC algorithm has two advantages compared to MMH in this situation: first, it was
only run once to produce all sequential posterior distributions, whereas each off-line parameter
estimation had to be started from the beginning of the sequence. The second advantage is the higher
resolution in the temporal evolution of parameter estimates.

Separating tfransmission and air infiltration heat losses

This section is a summary of a future article, not yet published as of the writing of this report
(April 2020).

The main motivation of the BAYREB project is to help justify retrofitting solutions, by identify-
ing which measures would yield the best ratio of energy savings to investment. The permeability of
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the envelope is an important factor in this decision, since it determines air infiltration rates and its
related heat loss. Pointing out that a building has significant leakage may motivate the decision to
prioritize the retrofitting of windows. Although a blower door test measures the global permeability
of the envelope, we wish in the project to assess whether non-disruptive measurements, which do
not interrupt the normal operation of a building, may suffice for this estimation as well.

Using RC models for heat transfer, it is possible to respectively represent heat loss through the
envelope construction and from air infiltration with two separate "branches": one including the
heat capacity of the envelope, the other without heat capacity. The theoretical study based on a
numerical benchmark however showed in Sec. 3.3 that such a representation involves identifiability
issues when calibrating such a model structure from data. In other words, using only temperature
measurements in relatively short periods of time does not allow disaggregating both effects.

We therefore consider two alternatives for the non-disruptive decomposition of the global heat
loss into transmission and ventilation.

* Sec. 4.6.3: using longer datasets, in order to attempt to find correlations between environ-

mental variables (wind speed and direction) and heat loss.

* Sec. 4.6.4: using more varied datasets, with CO, concentration measurements for the

estimation of occupancy and air change rate.
But first, Sec. 4.6.1 will describe the variables we are looking for, and introduce some models for
mechanical and natural ventilation.

Some theory on ventilation and heat loss

Ventilation and heat loss coefficients

We include the ventilation heat exchange into the overall heat balance of a thermal zone j:
o,

CjW = q)h + q)int + (I)sol + D+ q)inf +Pyens (4 19)

<HLC

A distinction is made here between the heat gain (or loss) caused by an intended air change
by mechanical ventilation ®,,,,, and by the uncontrolled infiltration heat exchange ®;,,r, which
includes all natural ventilation if windows are closed).

* The intended ventilation heat exchange ®,,,; may come from outdoor at temperature 7, (with

heat recovery efficiency 7ngr), an adjacent unheated room at temperature 7, and another
neighboring zone at temperature 7;,, its expression will be:

Drenr = CaQe(l - nHR)(ee - 91) +CaQu(9u - 91) +CaQn(en - 91)
=, Y. 0,61 —6) (4.20)
J

where ¢, is the air specific heat and Q are mass flow rates (kg/s).
* Infiltration gains/losses arise along air leakage paths, and may come from separate flows ()
as well:

Dinp = ca ) 00V — ) (4.21)
J

Although it is often considered that infiltration is only a direct exchange with the outdoor air:

Djyp = caQins (6. — 6;) (4.22)
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We then define the heat loss coefficient HLC and heat transfer coefficient HTC separately as:

®,, = HTC (6, — 6))
b, + CI)l-nf = HLC (96 — 6,)

(4.23)
(4.24)

By incorporating the infiltration losses through the building fabric, the definition of the HTC
can be extended to the definition of the heat loss coefficient HLC:

CI)in
HLC = HTC+ / 5 = HIC+ Hiy (4.25)

e ]

This equation displays the main target of the present section: not only estimating HLC, but also
decomposing it into HTC and H;,s

Ventilation models

When infiltration and mechanical ventilation air flow rates are combined, the solution is simple
additivity assuming the ventilation system has balanced flow. Because a balanced ventilation system
does not impact internal pressure or the air flows through the envelope. In case of unbalanced
systems, most comonnly buildings with exhaust ventilation fans, they change the internal pressures
and therefore need special consideration. Different approaches have recently been reviewed by

[HSW16].
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Figure 4.17: Total ventilation as a function of mechanical ventilation and infiltrations

With balanced mechanical systems, the solution is simple additivity, because such mechan-
ical systems do not impact the internal pressure. Ventilation heat loss can be calculated from
measurements of supply temperature, indoor temperature and ventilation flowrate.

Dot = caQvent (1 - nHR)(Te - T;) (4.26)

( Tvup - 7;)

If the supply temperature 7§, is not known, it should be estimated using the efficiency of the
heat recovery npyg. If there is no HR then ngyg = 0 and Ty, = T,

* The small temperature rise over fans can be considered included in the temperature efficiency
of the HR (one can consider 90 % of the fan power to be converted into heat which typically
lead to a 0.5-1 °C temperature rise over the supply fan, but lost on the exhaust side, asuming
the exhaust fan is located after the HR-unit).

* Duct losses and short-circuiting of supply and extract (for example surrounding the outlet and
inlet on the building facade) may also impact ventilation efficiency, supply temperature and
ventilation heat exchange. This may explain higher heat recovery efficiency than expected
when efficiency is estimated based on supply temperature, indoor and outdoor temperatures.



114 Chapter 4. Practical applications

» Some ventilation units have a heating coils on the supply side in addition to heat recovery
(and/or a pre- heating coil operated for frost-protection). On residential units the heating
coil is rarely hydronic (as is more common in large buildings), more commonly it is direct
electric heating. Ventilation heating should be considered in the energy balance to adhere
to the building physical framework, and in this case the supply temperature or at least the
supply heating set-point (and operation strategy) will be needed.

* It may also relevant to know whether the ventilation unit and ductwork is located inside or
outside of the heated building area (i.e. on an unheated attic, or basement).

With unbalanced systems (typically buildings with exhaust ventilation fans), the pressure
changes can impact natural infiltration non-linearly and make it sub-additive. Quoting [Hur16]: In
the example of an exhaust fan, it corresponds to a situation where the neutral pressure level rises
above the ceiling level. There is no exfiltration through the building envelope, and the infiltration is
therefore only compensating for the exhaust fan flow. But the stronger the wind, the less likely this
is to happen.

Hurel et al. [HSW16] reviewed different approaches and proposed new sub-additive methods
that are more robust across the full spectrum of air-tight to leaky buildings. In ESP-r’s implementa-
tion of the AIM-2 model, the calculated natural infiltration air flow is adjusted subsequently by the
Kiel-Wilson approach [KWS87].

0, = ((Qu) " +(0.50/)"")" +0.50; 4.27)

Where the net air flow rate from outdoors Q; is caused by the combined influence of natural
infiltration Q;,r and the unbalanced portion of the mechanical ventilation Q (matching notations
of the Fig. 4.17).

Many infiltration of models for residential buildings have been developed based on statistical
fits of infiltration data. Most empirical models rely on pressurization results (commonly obtained
from blower door tests) and use flow theory and statistical techniques to fit data to common housing
characteristics, but not all models are dependent on weather conditions. A review of applicable
models for air infiltration calculations is given by [Orm99].

By considering weather is the dominant driving force, infiltration flow can be assumed to be
linearly dependent on the outside-inside temperature difference and/or wind-speed. According to
[SG80], previous work at that time had been found to be quite accurate for the site where the data
was taken.

The Alberta Air Infiltration Model (AIM-2) can be expressed on the convenient form below
where the calculated potential specific infiltration flow rate Ql’-‘nf (Pa™) multiples with the infiltration
coefficient Cy,r. This flow coefficient can be estimated or obtained by using data from blower door
pressurizations tests. AIM-2 uses a superposition technique where the infiltration flow rates due to
wind O}, and stack effects QF are added, and in addition an interaction term is introduced.

Qin = Ciny ((Q}‘)l/ " (05" —0.33(05,0) 2”)" (4.28)

The power law models the relationship between the indoor—outdoor pressure difference and
the airflow rate through the leaks in the building envelope. Infiltration rates due to stack and wind
effects are calculated as

* = C (AP = C,
o +(AF) “( T, +273.15

Q% = Cu(AP,)" = C,, (0.5U%22p,)" (4.30)

w
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where Cs and C,, are empirical parameters dependent on the building geometry, and U is the wind
speed. Infiltration models are sensitive to parameters used for converting wind data measured at a
weather station to the building site and for local wind shelter effects from typography and nearby
buildings. This uncertainty can be reduced by wind measurements on site.

Estimating air flow rates from data

Without using a blower door test to estimate the permeability of the envelope, other ways of
estimating infiltration rates must be found. Air flow is a difficult variable to measure in a building,
especially when many leakage paths are involved. We will therefore attempt to assess the magnitude
or infiltrations from other measured variables, which infiltration influence, or which are influenced
by infiltrations. All these mutual influences are summarised by Fig. 4.18

Outdoor Indoor
UETHPEIEITE State-space model for indoor PRI
Infiltration temperature prediction
model Infiltrations
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and velocity i Legend E
|
1 (_ Non measured variable i
! ]
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Wind Manual concentration
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opening 8 Qmve State-space model for CO,
concentration prediction
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presence

Figure 4.18: From what measured variables may air infiltration be estimated from?

The right side of Fig. 4.18 illustrates where the state-space models for heat transfer, shown by
the red lines, stand in the relationship between measurable variables: they may predict the evolution
of indoor temperature, given outdoor conditions and a ventilation rate. The total ventilation
O, is the sum, or a sub-additive function, of infiltrations Q;,r, mechanical ventilation Q,.,; and
occupant-induced manual venting Q..

¢ Infiltration models predict Q;,r as a function of weather conditions and unknown empirical
variables, which should be estimated

* Mechanical ventilation flow rate Q,.,; and supply temperature 7,, can either be measured,
or estimated from the characteristics of the system: fan power and heat recovery efficiency
NHR-

* Occupant-induced manual venting Q. is difficult to predict. Either observation periods
without occupant influence should be selected, or a way to detect sudden changes in air
change rate should be proposed.

Fig. 4.19 shows an RC state-space model that includes terms for ventilation and infiltration
heat transfer. The same decomposition of influences can be used with other model types, such as
linear regression models. In addition to the identifiability issues that were raised earlier, it is clear
that evaluating the magnitude of infiltration heat exchange demands that the mechanical ventilation
component is known.

Fig. 4.18 displays another variable that is impacted by ventilation: the evolution of the indoor
CO; concentration. This measurement is often used either to detect occupancy in a room, or to
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Ventilation

Open = CaQuen(l - rI'HR)(Te - Ti)

Infiltration

Ding = CaQinf(Te - T

Figure 4.19: An RC model including ventilation and air infiltration

estimate its air change rate from the CO, concentration decay rate. Formulating the indoor CO,
concentration as the output of a state-space model may allow estimating the parameters that drive
its evolution by the same methods as with heat transfer.
The following two sections show the first results on the two approaches that are illustrated by
Fig. 4.18:
* Including wind measurements as an input of a heat transfer SSM, in order to estimate the
magnitude of air infiltration induced heat loss: Sec. 4.6.3
» Using a SSM for CO, concentration, in order to estimate the total air change rate from which
infiltrations are inferred: Sec. 4.6.4

Case study: Gainsborough house

The case study is an end-terrace dwelling of four social houses built in Gainsborough, UK (53.4°N,
0.77°W). The house under consideration is used by 1 adult and 2 children, and has been monitored
from March 2013 until November 2015. A detailed description of the houses and monitoring
campaign can be found in [SS16b]. Ventilation is provided using a *Lo-Carbon Astra’ mechanical
ventilation system with heat recovery (MVHR) from Vent-Axia. The system is equipped with a
monitoring system that registers temperature and relative humidity of supply and return air, as well
as the electricity consumption of the ventilation unit. In addition to an extensive monitoring of
energy systems and envelope performance, the dataset includes time series data with 5 min intervals
of the CO, concentration in the living room.

Using wind data to separate HIR from A,
The first approach to estimate H;,y is to include the wind speed as an input variable in a heat transfer

SSM. Supposing air infiltration occurs at the ambient temperature 7, with a total mass flow rate
Qiny, the related heat flow is:

q)inf = Caminf(ee - 61) (4.31)

and the Hj,¢ coefficient (W/K) is simply Hiyr = Pins /(T — T;) = coQing

A model for infiltration flow rate is shown by Eq. 4.28. In order to accomodate this formula for
linear model structure, we are making some restrictive assumptions: stack effects is neglected, and
wind effects have a known exponent. These hypothesis, while optimistic, let us perform a quick
assessment on this influence of wind on the heat balance of the building.

Qing < U (4.32)
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This simplified relationship is included in two model structures:
* One is a state-space model with the indoor temperature as output, shown by Fig. 4.19.
* One is a linear regression model,
CI)h + q)int + q)vent - HTC(TI - Te) _Ailsol +a, U (Tl - Te) (433)

Both methods estimate a constant a, coefficient from which the average infiltration flow rate and
Hi, s can be inferred.

Two months of data from the Gainsborough house (see Sec. 4.6.2) with a hourly time step
size are used, between January and March 2014. Results of the estimations are shown on Tab. 4.6.
The last week of measurements were used as validation data to check the accuracy of the SSM
predictions: this comparison is shown by Fig. 4.20.

Linear regression  State-space model

mean std mean std
HLC 45.53 9.76 54.23 13.47
HTC 37.45 7.69 49.72 4.22
Hi,p 8.08 6.01 451 12.8

Table 4.6: Decomposition of HLC into HTC and H;,;s using wind data
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Figure 4.20: An RC model including ventilation and air infiltration

The infiltration heat transfer coefficient H;,r has a mean estimated value in the same magnitude
as its standard deviation, or even lower in the case of the SSM estimation. This suggests either a
very small influence of wind on the energy balance, or insufficient data. Data was indeed sampled
at hourly time steps, which might be insufficient for the SSM to assess faster effects. Moreover, the
expression of the infiltration flow rate Eq. 4.32 is an excessive simplification of more comprehensive
models such as AIM-2: H;, is likely underestimated.

Despite this result, the prediction performance of the SSM seems significantly improved when
wind effects are taken into account (see Fig. 4.20). Moreover, we can observe a significant cross-
correlation coefficient between the wind speed and the prediction residuals of the model from
Fig. 4.19 if wind were not included in the inputs. There are therefore reasons to believe that this
approach is promising.
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Using CO, data to estimate occupancy and air change rates

Detailed coupled heat and air flow modelling in buildings is a time-consuming process that
often requires the coupling of several simulation tools and is prone to user errors. Additionally,
its outcome is very sensitive to non-controllable and uncertain conditions: occupant behaviour,
windows opening schedule, weather... Instead of traditional modelling practices, which translate
the knowledge of all physical phenomena of a system into equations, data-driven modelling refers
to the use of measurements, rather than a priori knowledge, to build predictive models through
statistical learning.

Estimating air flow rates from non-intrusive ambient measurements is a particularly complex
problem, especially under real conditions of building use: infiltration and ventilation rates are
very sensitive to the openings of doors and windows, and to outdoor conditions. The estimation
of ventilation rates is therefore closely linked in the literature to that of the presence and habits
of the occupants, by monitoring the evolution of CO, concentration in indoor air. From these
measurements, a stochastic state space model can estimate the ventilation air change rate if the
occupancy is known [Cal+15; Mac+18]. The same type of stochastic differential equation models
for CO, are used by [Wol+19] to estimate the variable number of persons present in a dwelling,
if the air change is known. [CJX18] give a more complete overview of occupancy estimation
techniques, with the use of a wide variety of sensor and statistical learning methodologies.

As a first step towards data-driven air flow predictions, the present work uses CO; concentration
measurements to simultaneously learn the air change rate and occupancy in a room. Based on a
simple CO, balance equation, two algorithms (Interacting Multiple Models and Particle Swarm
Optimisation) are used to find the fixed or time-varying parameters that best explain the evolution of
CO; concentration. The outcome is an estimation of the ventilation rate, that can be comparatively
analysed with other time series such as outdoor measurements (temperature, wind) or occupancy
patterns.

Modelling and learning methodology

The case study is described in Sec. 4.6.2. The method starts by selecting a CO, balance equation
for the lounge. This model should be kept as simple as possible, due to the limited available sensor
information: only one CO; time series will be used, and no other sensor is available to detect
occupancy. We suppose that air is supplied to the lounge at a variable rate n(z) (1/s or 1/h) with
outdoor CO; concentration ¢, (ppm). CO; is produced by a number of occupants p(t) with a
production rate ¢y (ppm/s or ppm/h) per person. Assuming that the living room is ideally mixed,
the evolution of its CO, concentration ¢ (ppm) reads:

(a_; =n(t)(ce —c)+cop(t) (4.34)

The target of the study is the estimation of the time-varying air change rate n and number of
occupants p in a room, using measurements of the CO; concentration. An assumption is made in
order to make this estimation feasible: at any time coordinate ¢, n and p can only take values among
a finite number of values. Vz, p, € {0,1,2,3}: there can be up to three people in the living room.
n; € {n1,ny}: the air change rate may either take a low value n; (baseline ventilation) or a higher
value n; (open windows), to be determined. We will show below how the averaged calculated n,
will then be able to take any value between these two bounds.

These parameters are assembled into a vector 6, = {n;, p, }, which is a finite state Markov chain
taking a finite number of values N according to a transition probability matrix H. Other parameters,
denoted global parameters 6, = {n;,n,,co, H} are constant but unknown: the two air change rate
bounds, the CO, production rate per occupant and the components of the transition matrix. After
time discretization, Eq. 4.34 can be reformulated as a discrete stochastic state-space model:
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Cy :A(Gg,GI)C,q +B(9g,9t>u[ +wy (435)
e = C(6;,6/)c: + v (4.36)

where u, are input data influencing the balance equation, such as the outdoor CO; concentration
Ce; Yy 1s the measured indoor concentration, wy and v; are mutually independent white Gaussian
processes which respectively represent the modelling and measurement uncertainties. A, B and C
are the matrices of the system, functions of the global and temporal parameters 6, and 6.

If 6, and 6; were known, this system of equations is solvable by Kalman filtering, which is
common practice for the calibration of heat transfer models in buildings [RRO18]. The point
of the study is however to estimate them, which is done by two algorithms: 6, is estimated by
the Interacting Multiple Models (IMM) method [BB88], and 6, is estimated by Particle Swarm
Optimization (PSO). This workflow is shown on Fig. 4.21.

Global parameters 8, = {n,,n,, ¢occ, H}

Data i PSO
(ye uy) .
IMM algorithm
Jor every time step t
» -  Mixing
Kalman filtering
Bayes update

Output

- CO2 prediction (

- Variable parameters 6, = {n;, p;}
- Total likelihood

Figure 4.21: Workflow for the simultaneous estimation of occupancy and air change rate

Supposing fixed values for 8,, the IMM algorithm consists at every time step of a Kalman
filter prediction for all N possible values of 6, . These N "hypotheses" are then weighted by the
prediction likelihoods calculated by the Kalman filters. The next time step then starts by a mixing
step which computes the initial condition for the filter, according to these weights and the transition
probability matrix H. Although this description is quite concise, the IMM algorithm is more clearly
explained by [BB88].

Along with a prediction of the indoor CO, concentration and an estimation of the variable air
change rate and occupancy, IMM returns the total prediction likelihood, which indicates the fit
of predictions with measurements. This indicator is used as objective by a PSO algorithm that
computes the optimal values of the global parameters 6.

Results

Due to the computational load of the PSO algorithm, the procedure described above was applied on
the data in two steps: (1) Global parameter tuning: using one month of data (April 2013), the entire
workflow shown on Fig. 4.21 was implemented so that the optimal value of 6, was found by PSO.
(2) The IMM algorithm was then run on the entire dataset (March 2013 to November 2015), using
this predetermined value for 6, . Results are shown on Fig. 4.22 and 4.23 below.

Fig. 4.22 shows the predictions of the fitted model over a short period (2 days): CO, concentra-
tion in the living room, air change rate and occupancy. The model described above is hereby called
Model 2, and compared to an alternative model (Model 1) where the air change rate is constant and
part of the global parameters, fitted separately every day. Model 2 (variable air change rate) shows
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Figure 4.22: Predictions of the fitted CO, prediction model

a better agreement with the data, and allows observing the fluctuations of n between a lower value
n; = 0.272 (vol/h) and an upper value ny = 1.93 (vol/h): this suggests a detection of windows and
doors opening, and an estimation of the baseline ventilation rate.

On Fig. 4.23, predictions over the entire dataset (March 2013 to November 2015) were averaged
to daily values, in order to detect relationships between n, occupancy and weather trends. Fig
4.23(a) shows averages of ventilation rates sorted by the detected number of occupants in the room
at the same time. When at least 1 occupant is present, there is a significant probability that n takes
higher values, suggesting that these values denote windows and doors opening. This trend increases
with the number of occupants. When the lounge is empty, the probability distribution of n is much
more concentrated near its baseline value.

Fig. 4.23(b) compares daily averages of n, sorted by occupancy, with the measured temperature
difference AT between the living room and outdoor. Although no significant correlation between n
and AT is visible when the room is empty, there is a stronger one when someone is present. This
trend suggests that a behaviour model may be obtained from this method. No significant correlation
was found with wind speed measurements yet, from which it may be possible to calibrate air
infiltration models.
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Figure 4.23: Distribution of daily averaged ventilation rates related to occupancy (a), and indoor-
outdoor temperature difference (b)
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(5. Summary and prospects of the project

Summary of the BAYREB project

The contribution of the project to the area of building energy performance assessment can be
described into three main parts.

Background literature review on inverse problems and how to solve them

First, a state of the art of the common practices in building energy performance assessment
was attempted. Chap. 1 reviewed some existing practices for estimating energy performance
indicators from in-situ measurements, and showed that most of them are not applicable in occupied
buildings. The project was indeed motivated by the need for a method that would yield interpretable
performance indicators from a monitored building in normal operating conditions, in order to
provide incentive for refurbishment. Ideally, these indicators should disaggregate the building
performance into separate heat loss terms (transmission through the envelope, windows, thermal
bridges, heat loss from air infiltration...) as to prioritize energy conservation measures. Chap. 2 then
formalizes the problem and presents the mathematical and numerical tools that were used in the
project. Some elements of model calibration and statistical learning are presented. We especially
emphasize the necessary steps for proper model specification, and for model checking and validation
once optimal parameters have been estimated. A special focus is then made on linear stochastic
state-space models, a category of models used to learn from time-series energy and temperature
readings. The popular RC models belong to this category. All steps of the solving process are
described: model specification, discretization, Kalman filtering, and parameter estimation with
Maximum Likelihood Estimation or Markov Chain Monte Carlo. The main elements of this chapter
were also published in [Roul8].

Identifiability, interpretability, and how to assess them

The second main part of this report, and the first essential contribution of the project to the state of
the art, is the question of parameter interpretability. Once a numerical model has been trained by
fitting its parameters so that its output best matches observed data, we want to ensure that these
parameters may be interpreted as representative of real physical properties. This question goes
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beyond the concept of model identifiability, which asks whether model parameters may be uniquely
estimated from data: we wish to know about physical meaning. Chap. 3 describes the methodology
of interpretability assessment. It is based on a numerical benchmark: a simulated building in which
all envelope properties (insulation thickness, air change rate, transmission of glazing...) may be
changed. The question is whether variations of the properties of the reference building result in
variations of the expected performance indicators estimated from reduced-order models, and only
the expected indicators. Through sensitivity analysis, we can find the origin of the variance of
estimated parameters, and point out the phenomena that were not appropriately explained by the
reduced-order models. Two applications of the numerical benchmark were then proposed: finding
the minimal monitoring duration so that estimates of the global heat loss coefficient are robust
regarding variable weather conditions; finding whether a minimal set of measurements is enough to
disaggregate heat loss from air infiltration and envelope transmission. Chap. 3 is thus a theoretical
study of the limitations and potential of building energy performance assessment based on in-situ
measurements.

In a nutshell, this part of the work aimed at establishing to what extent stochastic RC models
were able to estimate the thermal performance of a building envelope from weather, indoor
temperatures and heating power designed as to not disturb occupants. The overall thermal resistance
can be robustly estimated from minimally 11 days training data and achieves very satisfactory
interpretability. Finer decomposition of the heat losses has however not been found possible from
poorly informative data. Finally, regardless of the conditions of data collection, the good practice
workflow for meaningful calibration remains valid and in any case necessary for any thermal
characterisation.

Case studies

Finally, Chap. 4 illustrates the methods proposed by the project by showing a collection of
independent practical applications. Several methods are illustrated, each of which aims to answer a
question related to building energy performance assessment:

* The energy signature method is used on commercial buildings data. Although this method
is very simple and relies on strong assumptions, it allows a coarse decomposition of energy
use and a comparison of performance before and after energy conservation measures were
applied.

* Ordinary linear regression demonstrates how to easily identify which phenomena have a
significant impact on the energy balance of a building, and which measurements do not need
to be taken into account.

* In Sec. 4.3, the main methodology of the project is demonstrated: using a state-space model,
i.e. a resistor-capacitor network written in stochastic form, to analyse time-series readings
of energy use and temperatures, and estimate physical properties of the building envelope.
The methodology comes with criteria for model checking and validation, which allow some
confidence in the interpretation of results.

* In Sec. 4.4, these physically-based state-space model structures are extended in a hybrid form
called latend force models. LFMs are a state-space model including an uncertain influence
modelled by a temporal Gaussian Process: this is a way to include unobserved phenomena
that may have an impact on the model output, and thus improve its predictive accuracy. GPs
are however non-parametric models that are difficult to relate to physical concepts: the result
is that the estimated parameters of an LFM may not be physically interpretable.

* Sec. 4.5 shows online parameter estimation with the Sequential Monte Carlo algorithm. A
similar RC model structure as in the previous sections is trained sequentially: its parameters
are updated with every new data point, so that the evolution of their posterior distribution can
be seen as a function of the available data.



5.2 Prospects 125

* Finally, Sec. 4.6 shows an attempt at decomposing the global heat loss coefficient of the
envelope into a heat transfer coefficient, and a separate term for heat loss related to air
infiltration. We have seen in Sec. 3.3 that such a disaggregation was not possible on the
sole basis of indoor temperature measurements: instead, Sec. 4.6 uses more diversified data,
such as wind speed and direction and indoor CO, concentration measurements, in order to
estimate infiltration air flow and the induced heat loss. While results come with a very high
uncertainty, this is considered a promising prospect of the work.

5.2 Prospects

In a close future, the results could be supplemented by extending the methodology to other building
typologies as to examine how thermal inertia and architectural specificities influence the estimation
of the thermal performance. Other typologies would indeed widen the issues to tackle, just to name
a few:

» Thermal stratification and temperature differences in the different rooms become all the more
problematic in large buildings, notably with several storeys. It implies that some part of the
information on the thermal behaviour of the building will be missing. These temperature
discrepancies seem indeed to have an impact on the estimation’s accuracy and invite to further
research on the subject. The issue of measurement representativeness actually also apply to
the measurement of wind speed and solar irradiation, as well as measurement of the heating
power when it is derived from overall energy use data. A quantification of the effect on
accuracy of measurement discrepancy would be valuable and would help understanding the
extent of the issue. This would help concentrate the effort on tackling on the most influential
measurement discrepancies. It could be done by design of appropriate sensor placement
in order to reduce uncertainty, although extensive measurements would certainly be more
intrusive. At least, acknowledgement of the measurement discrepancy in the modelling
process is necessary to reflect the associated uncertainty in the estimation results.

* Measurement of heating power delivered in a single room for centralized heating systems
also pushes further the issue of measurement discrepancy;

* Thermal characterisation of the envelope in apartment blocks, large office buildings, or
hospitals questions the measurements representativeness. In particular, it cannot be expected
at all that all zones follow identical temperature set point schedules and deploying sensors in
all rooms is most probably cost prohibitive. This implies that a model would be trained for
each measured zone. But then, sampling of zones to measure raises the issue of a compromise
between efficiency and representativeness. Then, while sampling may be an option, the
question of the accuracy of RC model training in a single zone remains, when there are more
heated neighbouring zones than surfaces towards the exterior.

* The question of buildings bound by large surfaces towards heated neighbouring spaces, such
as in offices and hospitals but also in terraced houses, is also left to tackle with RC models
trained from non intrusive data.

* There remains questions on the most informative indoor temperature set point schedule. If
there were significantly more informative and yet occupant-friendly schedules, it becomes
relevant to control such schedules when the experiments are performed, in order to lower
uncertainties.

In the prospect of assessing the suitability of retrofit strategies, this work could also be applied
to the identifiability of the dynamic characteristics of the envelope. Indeed, energy performance is
not only influenced by a static thermal resistance but also by the dynamic response of the envelope.
This work suggests that the dynamic nature of stochastic RC models would then be adequate for
such estimation, although identifiability and interpretability will have to be assessed on basis of
data collected in uncontrolled non intrusive conditions.
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Next, in the wider prospect of achieving thermal characterisation of a building envelope
from data collection under occupancy, the results of this thesis are believed to enlighten the
extent of the scientific problem thus defined. Very basically, measurements in an occupied space
imply issues with first data collection which will be aggregated and possibly biased and secondly
with unpredictable and barely measurable heat and moisture production as well as unpredictable
occupancy related activity such as open doors and windows.

In a non intrusive and uncontrolled experimental framework, data exploitation will first neces-
sarily rely on disaggregation of the energy consumptions to distinguish energy use for heating from
energy use for electrical appliances. If it cannot be done, it constitutes an additional measurement
discrepancy error with most probably a large effect on accuracy of a thermal characterisation.

Regarding interaction of the occupants on the envelope and on the heat and moisture balance,
it implies major model discrepancy as the building envelope has multiple states unaccounted for
in a usual RC model. Accuracy and uncertainty are therefore not guaranteed to be to the least
satisfactory. The question of repeatability under the variability of the actions of occupants is also
questioned, which calls for further research on a Bayesian based indicator for convergence of the
estimation.

These occupancy related issues invite to at least account for uncertainties either in the form
of a global model discrepancy term as in Bayesian calibration in the sense of [CM18; HCA12],
although physical interpretability has been found to be an issue [CM 18], or use Gaussian Latent
Force Models [SAL18] that account for unmeasured influential input variables directly in the state
space equations.

Both propositions are also arguments in favour of a Bayesian approach. Indeed, introduction of
unknown, unmeasurable and systematic uncertainties will certainly have an impact on practical
identifiability and all the more on the algorithmic ease to make estimations. As a consequence,
physical interpretability would even less be within reach. A Bayesian approach through careful
prior choices would at least act as regularisation in the inverse problem.
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