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Simon Rouchiera ∗∗, Mickaël Rabouilleb, Pierre Oberléb
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Abstract
Due to the ill-posedness of many inverse problems, parameter estimates are often prone to a possibly

large uncertainty, caused by a series of errors and approximations in the experimental and modelling work.
Stochastic state-space models for time series modelling incorporate a term of process noise that represents
system error; most studies on building thermal model calibration however employ deterministic models that
overlook this error.

This paper investigates how accounting for modelling errors affects the results of model calibration.
Several simplified models are defined to simulate the indoor temperature of an experimental test cell. Some
models include process noise and others do not. The parameters of each model are then learned repeatedly
by using several training datasets from the test cell. The MCMC algorithm is used for training. The
robustness of parameter estimates between independent trainings is evaluated. Then, the forecasting ability
of the deterministic and stochastic options are compared, in terms of accuracy and robustness. Results show
that stochastic modelling considerably increases the uncertainty of parameter estimates, but ensures their
consistency between separate trainings, whereas deterministic models are less robust and offer a less reliable
forecasting.
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1 Introduction
The calibration of simplified building thermal models using in-situ measurements is now a widespread re-
search topic [1]. It is a type of inverse problems, as the user attempts to identify the causes of a physical
phenomenon by observing its consequences: typically, observing the evolution of indoor temperature leads
to the estimation of external sollicitations or envelope properties. It is solved as an optimisation problem,
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where the objective is the minimisation of the deviation between measurements and predictions from a model
[2, 3]. Such calibration is commonly performed for two general types of applications: the characterisation of
the intrinsic building performance [4, 5, 6, 7, 8, 9] or other physical values; the identification of a model for
predictive purposes [10, 11, 12], for instance in the aim of model predictive control [13, 14, 15, 16]. In the
first case, the model should be based on some physical representation of reality in order to assess physical
parameter values. In the second, a black-box model is suitable as it is used primarily for predictive purposes.

Due to the ill-posedness of many inverse problems [17], parameter estimates are prone to a possibly
large uncertainty, caused by a series of errors and approximations in the experimental and modelling work
[18, 19]. First, the model is an approximation of the real system: this model discrepancy may result from
missing physics, overlooked input variables, numerical approximations, erroneous hypotheses, etc. Secondly,
experimental uncertainty arises from inaccurate or intrusive sensors. Accounting for these errors when solving
an inverse problem allows guaranteeing the value of estimated parameters within certain bounds [1].

Most of the time, the inverse problem of parameter characterisation is formulated supposing an unbiased
model [18]. According to this hypothesis, there exists a set of parameter values that will allow the model
to accurately simulate reality, and the only deviation between its output and experimental observations is
measurement noise. This hypothesis is exceedingly optimistic, especially when models used for the charac-
terisation of building thermal behaviour are simplified resistor-capacitor (RC) structures [3]. Accounting for
modelling approximations is essential for the legitimacy of calibrated models and the interpretability of their
parameters. One possible way to do so is using stochastic differential equations, solved with a Kalman filter
for the estimation of states [20]. Another option for the quantification of model uncertainty is to calibrate a
discrepancy function in an iterative model updating procedure [21, 22].

The literature offers many applications of parameter estimation and forecasting with stochastic models
[23, 24, 25, 26, 27], but no direct comparison with their deterministic counterpart. According to [26]:
stochastic models give more reproducible results and less bias, because random effects due to process and
measurement noise are not absorbed into the parameter estimates but specifically accounted for by the noise
terms. Separately, [28] stated and demonstrated that an analysis that does not account for model discrepancy
may lead to biased and over-confident parameter estimates and predictions. The target of the present paper
is to show this effect, in the case of a simple building and lumped capacitance models, made of a network of
resistors and capacitors (denoted RC models). The process noise is included in the formulation of some of
these models (denoted stochastic models), and excluded in others (deterministic models). The parameters
of each model are then learned repeatedly by using several training datasets from an experimental test cell.
The robustness of parameter estimates between independent trainings is evaluated. Then, the forecasting
ability of the deterministic and stochastic options are compared, in terms of accuracy and robustness.

Sec. 2 briefly recalls the theory of filtering, forecasting and inference in state space models, applied to
building modelling. Sec. 3 extends the questioning of the paper shown above, and presents the experimental
and numerical methodology to answer it. Sec. 4 then shows the results of this study.

2 Inference in state space models for building modelling
2.1 Linear state space models
The presented study considers the particular (yet quite widespread and flexible) case of linear, Gaussian,
time-invariant, discrete-time state space models [20]:

xt = Fθ xt−1 + Gθ ut + wt (1)
yt = Hθ xt + vt (2)

where t is a discrete time coordinate. The terms of this system are denoted as such:

• xt is a p-dimensional vector of state variables;

• yt is a q-dimensional vector of observations, or output variables;
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• ut is a r-dimensional vector of inputs variables;

• wt ∼ N (0,Q) is the process noise;

• vt ∼ N (0,R) is the observation noise.

In addition to the covariances Q and R, the system is defined by its matrices Fθ, Gθ and Hθ. The subscript
θ indicates that these matrices are functions of a vector of parameters θ: parameter estimation is the process
of assessing θ from a set of observations y1:N = {yt, t ∈ 1 . . . N}. The process noise {wt} is a way to account
for modelling approximations, unrecognized inputs or noise-corrupted input measurements [23]. The main
target of this work is to show the importance of this term in the outcome of a parameter estimation problem.

[26] denote stochastic state-space models as grey-box models, as opposed to deterministic white-box models
which do not account for process noise. This definition of grey-box versus white-box models is however
not unanimous in the literature: in the present paper, both alternatives will be denoted as stochastic or
deterministic.

2.2 Simplified building modelling
As a discrete-time model, Eq. 1 is not the direct expression of physical conservation equations. The present
section describes how a simplified building model, written in continuous time, can be translated to this form
in order to perform Kalman filtering, inference and forecasting.

This study uses RC models (or lumped models) for simplified building modelling. In the absence of
non-linear phenomena (aeraulics, long-wave radiation, moisture transfer...), these models can be expressed
as linear state space models in continuous time [23]:

Ṫ(t) = Aθ T(t) + Bθ u(t) + w(t) (3)
y(t) = Cθ T(t) + v(t) (4)

• T(t) is the p-dimensional vector of all temperatures calculated by the model;

• y(t) is the q-dimensional vector of output temperatures that will be compared to measurements (typ-
ically q = 1 and y(t) is the indoor temperature);

• u(t) is the r-dimensional vector of boundary conditions: prescribed heat input, solar radiation and
outdoor temperature;

• w(t) ∼ N (0,Qc) is the process noise in continuous time;

• v(t) ∼ N (0,Rc) is the observation noise in continuous time.

The target of a model calibration problem is to fit the model output y(t) with measurements carried in
an experimental setting, in order to estimate parameter values θ that constitute the terms of the system
matrices Aθ, Bθ and Cθ (the latter is often a matrix of zeros and ones indicating which of the temperatures
T(t) are observed). Measurements are classified according to their role with respect to the model: inputs
u1:N = {ut, t ∈ 1 . . . N} are outdoor temperature, solar radiation and heating power; the observed output
y1:N is the indoor temperature. The equations for the specific RC models used in this study will be detailed
below in Sec. 3.3.

The stochastic model described by Eq. 3 must be discretized in order to specify its evolution between
discrete time coordinates, as in Eq. 1. Let us denote the sample interval length ∆t and assume that the
inputs u(t) are constant during this interval. Then the system made of Eq. 3 and 4 can be translated into
the discrete system made of Eq. 1 and 2 through:
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Fθ = exp (Aθ ∆t) (5)
Gθ = A−1

θ (Fθ − I) Bθ (6)
Hθ = Cθ (7)

Q =
∫ ∆t

0
exp (Aθ ∆t) Qc exp

(
AT
θ ∆t

)
dt (8)

R = 1
∆tRc (9)

The typical workflow for calibrating an RC model is to first select a model structure (1R1C, 2R2C, etc.)
and write its equations in matrix form 3 and 4. Measurements are then acquired at a sample rate of ∆t and
the model is discretized with Eq. 5 through 9 in order to obtain the system in the form of Eq. 1 and 2.
Once the system is expressed as such, one can proceed to the next steps of filtering, parameter estimation
and forecasting.

2.3 Kalman filter
Let us first suppose that the parameters θ of the system are known, and a sequence of output observations
y1:N and input variables u1:N has been obtained.

Most building model calibration practitioners work with deterministic models, in which modelling errors
are not explicitally expressed as it is in the previous section. In these circumstances, all states x1:N of the
system are predicted given some parameter values θ, and compared with observations in a single operation.
The objective function of the parameter estimation problem is the sum of squared errors

∑N
t=1 (yt −Hθxt)2.

In a stochastic setting however, the model is considered potentially wrong and its error covariance Q might
also be unknown. If the model is linear, the estimation of the underlying states x1:N given the observations
y1:N is accomplished by applying a Kalman filter.

Filtering produces p (xt|y1:N , θ), the probability distribution function of each state xt given measurements
and parameter values. In the following, definitions adapted from [20] are used: xt|s is the expected state at
time t given observations up to time s. Pt|s is the variance of the state xt, i.e. the mean-squared error.

xt|s = E (xt|y1:s, θ) (10)
Pt|s = Var (xt|y1:s,θ) = E

[
(xt − xt|s)(xt − xt|s)T |y1:s, θ

]
(11)

The Kalman filter algorithm is described here:

• Set the initial states x0|0 and their covariance P0|0

• for t = 1...N :

1. Prediction step: given the previous state xt−1|t−1 and its covariance Pt−1|t−1, the model esti-
mates the one-step ahead prediction.

xt|t−1 = Fθ xt−1|t−1 + Gθ ut (12)
Pt|t−1 = Fθ xt−1|t−1 FTθ + Q (13)

2. Innovations (prediction error) εt and their covariances Σt are then calculated, along with the
Kalman gain Kt:

εt = yt −Hθ xt|t−1 (14)
Σt = Hθ Pt|t−1 HT

θ + R (15)
Kt = Pt|t−1 HT

θ Σ−1
t (16)
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3. Updating step: the new states at time t are updated from the prediction xt|t−1 and the inno-
vation.

xt|t = xt|t−1 + Kt εt (17)
Pt|t = (I−Kt Hθ) Pt|t−1 (18)

• The total (negative) log-likelihood can be calculated up to a normalizing constant:

− lnLy(θ) = 1
2

N∑
t=1

ln |Σt(θ)|+
1
2

N∑
t=1

εt(θ)T Σt(θ)−1 εt(θ) (19)

Roughly speaking, the Kalman filter applies Bayes’ rule at each time step: the updated state p(xt|y1:t) =
N (xt|t,Pt|t) is a posterior distribution, obtained from a compromise between a prior output of the model
p(xt|y1:t−1) = N (xt|t−1,Pt|t−1) and the evidence brought by measurements yt. Their relative weight is
expressed by the Kalman gain Kt that measures the relative confidence we put in both the model and the
measurements.

This standard Kalman filter algorithm works for linear systems only. Non-linear systems require either
the Extended Kalman Filter (used by [26]) or the Unscented Kalman Filter.

2.4 Parameter estimation by MCMC
The prediction of states by filtering supposes that parameter values θ are known. In many problems however,
these values are not known. Parameter estimation, or inference, can be carried in either a deterministic or
a stochastic framework. Maximum Likelihood Estimation (MLE) is the typical way to solve parameter
estimation problems [26]: starting from initial values θ0 for the parameters, a Newton-Raphson procedure is
run with the negative log-likelihood (Eq. 19) as the objective function. One can also obtain an estimate of
the uncertainty of the parameters, as the inverse of the Hessian matrix calculated at the ML estimator θ̂ML
[23].

Instead of MLE, the posterior distribution p (θ|y1:N ) is estimated here by Bayesian inference:

p (θ|y1:N ) ∝ Ly(θ) p (θ) (20)

where Ly(θ) is the likelihood function calculated by the Kalman filter algorithm, and p (θ) is the prior on the
parameters. Bayesian inference describes parameters as probability density functions (PDF) and returns not
only point and spread estimates of the likely solutions, but also a complete description of their uncertainty,
conditioned by potential measurement noise and system noise.

The Metropolis-Hastings (MH) algorithm [29] is one of the Markov Chain Monte Carlo (MCMC) methods
and is used here to approximate the posterior PDF. The algorithm is described extensively in the time series
analysis literature [30] and in recent papers on building physics parameter identification. [31]. MCMC gives
better approximations of the parameter confidence intervals in the case where the Jacobian of the system
is not explicitely formulated. Examples of Bayesian inference in the calibration of building energy models
[32, 6], and the characterisation of thermal properties of materials and components [33, 34, 31].

2.5 Forecasting with uncertain parameters
Forecasting is the estimation of future states {xt, t > N} for time steps outside of the measurement range
y1:N . The main reference for this section is [30].

Let us first fix the value of the parameter vector θ. Forecasting with a state space model is done by only
iterating the prediction step equations 12 and 13, and bypassing the update equations 17 and 18, since no
new observations are available. In other words, the distribution of xN+k given the data y1:N is Gaussian,
with:
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E (xN+k|y1:N , θ) = Fθ E (xN+k−1|y1:N , θ) + Gθ uN+k (21)
Var (xN+k|y1:N , θ) = Fθ Var (xN+k−1|y1:N , θ) FTθ + Q (22)

Let us now suppose that θ is described by a probability distribution, such as the outcome of the MCMC
algorithm applied in this study. The PDF of xN+k given y1:N is calculated by integrated the above PDF
(fixed θ) over all possible values of θ, weighted by the posterior PDF:

p (xN+k|y1:N ) =
∫

Ω
p (xN+k, θ|y1:N ) dθ

=
∫

Ω
p (xN+k|θ,y1:N ) p (θ|y1:N ) dθ (23)

The first term within the integral of Eq. 23 is the same PDF as described by Eq. 21 and 22, and the
second term of the integral is the posterior distribution of θ once it has been estimated from the data.

Using MCMC as a parameter estimation technique makes the computation of Eq. 23 particularly con-
venient, since the posterior distribution p (θ|y1:N ) is directly available after inference. Forecasting uncertain
states over this uncertain parameter space can be done by drawing a large enough sample θ1:n from the
posterior, and averaging the state expectancies and variances calculated by Eq. 21 and 22 over this sample:

E (xN+k|y1:N ) ≈ 1
n

n∑
i=1

E (xN+k|y1:N , θi) (24)

Var (xN+k|y1:N ) ≈ 1
n

n∑
i=1

Var (xN+k|y1:N , θi) (25)

3 Questioning and case study
3.1 The question
The calibration of building energy models, such as simplified RC structures, can be done either in the
aim of physical parameter estimation or the identification of a system for predictive purposes. In both
cases, the user starts by formulating the model in continuous time (Eq. 3 if the model is linear), which
after discretisation resembles Eq. 1. This formulation can then be used for states estimation, parameter
estimation and forecasting.

The process noise wt is often not included in the system equation, although RC models are very simplified.
This means that a potentially important source of error is neglected in an inverse problem, where each error
may have important consequences on results.

The question this paper aims to answer is: what are the effects of accounting for modelling
uncertainty on the results of parameter estimation and indoor temperature forecasting? In
order to answer it, model calibration was carried with seven separate training datasets from the same
building, operating in similar conditions (described below) from May to August 2017. The same RC model
structure was thus calibrated seven times, resulting in seven estimates (posterior PDF’s) for each parameter
of the model (resistances, capacitances, effective solar aperture). Results will be presented in two parts:
• Parameter estimation: estimated parameter values and their uncertainty intervals are compared

across all datasets, in order to show whether using a stochastic rather than deterministic model result
in more robust (consistent) parameter estimates;

• Forecasting: each dataset is used alternatively as a training set or a test set, in a form of 7-fold
cross-validation, in order to assess the predictive bias and variance of deterministic and stochastic
alternatives.
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In the stochastic modelling situation, the procedure for parameter estimation and forecasting follows the
steps presented in Sec. 2. In the deterministic case, the system noise wt is removed from Eq. 1 and 3: states
x1:N are single point values and no Kalman filtering is applied. The objective function of the parameter
estimation problem is simply the sum of squared errors, as described above.

3.2 Case study
The experimental test cell used in this study is called the Armadillo Box. It is a demonstration building of
42 m2 floor area, designed for the 2010 European Solar Decathlon by the ENSAG-GAIA-INES team. The
envelope is a light wood framed construction with integrated insulation. Heating and cooling is performed
by a “3 in 1” heat pump, and photovoltaic solar panels provide recharge for electric vehicles. A large glazing
area on the southern facade ensures solar heat gain in winter, while shadings have been sized to reduce
summer overheating. The building considered in this study, shown on Fig. 1, is a copy of the original
Armadillo Box, built on the INES test facilities to investigate its performance on the long term. A technical
room on the northern side hosts monitoring equipment.

Figure 1: View of the southern facade and floor plan of the Armadillo Box

The building is monitored by a variety of sensors, but the present study only uses records of indoor
temperature and prescribed heating power, in addition to weather data. The indoor temperature profiles
used here have been averaged over several sensors distributed in the living space. Seven separate experimental
sequences of four days each were used in this study. One of these test sequences is shown on Fig. 2: Fig. 2(a)
shows indoor temperature Tin, adjacent room and outdoor temperature Tout ; Fig. 2(b) shows the indoor
heat input Ph and global solar irradiance on a southern surface Isol .

Sequence Duration (h) Heating (2 kW) Weather
Start (h) Duration (h) T ext (C) Isol (W)

D4 72 0 24 23.5 320.6
D5 90 18 24 21.5 256.5
D6 90 18 24 20.0 286.9
H1 100 3 48 16.3 225.4
H2 116 20 48 18.6 278.4
K1 90 18 24 17.4 207.3
K2 90 18 24 21.1 272.8

Table 1: Description of the test sequences
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(a) (b)

Figure 2: One measurement sequence in the Armadillo box

The test sequences resemble sollicitations imposed in similar studies [35]. Each sequence has a duration
of 3 to 5 days, and includes a period of imposed indoor heating of 2 kW, for either 24 or 48 hours. Heating
may start right after the beginning of the test, or after a period of free-floating temperature. Tab. 1 shows
the conditions of each sequence, as well as its average outdoor temperature and solar irradiance. It is
important to notice that all sequences are very similar: a single model, if calibrated correctly, should be able
to reproduce all of them accurately. The point of the paper is to check if deterministic and/or stochastic
models indeed show such a robustness.

3.3 Modelling
The questioning stated above supposes that a given RC model structure is trained twice from each data set:
once in a deterministic formulation, once in a stochastic formulation. The robustness of each formulation is
assessed by comparing parameter estimates arising from all datasets. An additional dimension is however
added to the problem by applying the methodology to three types of RC models.

It seems reasonable to think that the lack of system uncertainty would be more problematic for simple
models than for complex models: in an overly simplified model, such as one with a single thermal resistance
R and capacitance C, modelling errors should be larger than in a model with close to no bias. As a result,
we expect that if the system error wt is neglected (deterministic setting), parameter estimates should be
highly inconsistent across different training datasets. We expect this effect to be reduced with models of
higher complexity and lower bias.

An additional dimension is added to the problem by investigating the above questioning with several
levels of model complexity: 1R1C, 2R2C, 3R3C. The procedure begins by writing Eq. 3 and 4 for a given
model structure (1R1C, 2R2C or 3R3C) and modelling type (deterministic or stochastic). Some variables of
Eq. 3 and 4 are common to all situations:

u(t) =
[
Tout Isol Ph

]T (26)
y(t) =

[
Tin
]

(27)
v(t) ∼ N

(
0, r2) (28)

Other variables depend on the model structure and are listed on Tab. 2.

• Each model has a number of temperature nodes; the Cθ matrix indicates the position of the observed
(indoor) temperature. In each model, the temperature T1 is observed.

• The 2R2C and 3R3C models respectively have one and two unobserved temperature states. Their
initial states {T2,0, T3,0} are unknown parameters of the problem.

8



Model 1R1C 2R2C 3R3C

T(t)
[
T1

] [
T1 T2

]T [
T1 T2 T3

]T

Aθ

[
− 1
R1C1

] − 1
R1C1

1
R1C11

R1C2
− 1
R1C2

− 1
R2C2



− 1
R1C1

1
R1C1

0
1

R1C2
− 1
R1C2

− 1
R2C2

1
R2C2

0 1
R2C3

− 1
R2C3

− 1
R3C3



Bθ

[
1

R1C1

k1

C1

1
C1

]  0 k1

C1

1
C1

1
R2C2

k2

C2
0




0 k1

C1

1
C1

0 k2

C2
0

1
R3C3

k3

C3
0


Cθ

[
1
] [

1 0
] [

1 0 0
]

Qc

[
q2
1

] [
q2
1 0
0 q2

2

] q2
1 0 0
0 q2

2 0
0 0 q2

3


Table 2: Matrices of the RC state-space models in continuous form

• Ci is the heat capacitance (J.K−1) of state Ti, ki is its equivalent solar aperture (m2) and qi is the
standard deviation of the system error associated to it.

• The models are written with the assumption that the system error covariance matrix Qc is diagonal.
The standard deviations of system errors qi and measurement error r are considered unknown, and
will be inferred along with the other parameters of the models.

As an example, the lists of all unknown parameters of the 2R2C model structure, in the deterministic
and stochastic cases respectively, are:

θdet
2R2C =

[
R1 R2 C1 C2 k1 k2 T2,0 r

]
(29)

θsto
2R2C =

[
R1 R2 C1 C2 k1 k2 T2,0 r q1 q2

]
(30)

Once written in continuous form, each system undergoes discretisation by Eq. 5 through 8. Each resulting
discrete system is trained in a combination of the following settings:

• Deterministic or stochastic modelling;

• 1R1C, 2R2C or 3R3C model structure;

• One of 7 training data sets.

This results in 42 sets of posterior PDFs p(θ|y1:N ) that were calculated by the MCMC algorithm. The
questioning of the paper is answered in two sections: Sec. 4.2 compares these PDFs to show the ability of
stochastic and deterministic models for robust parameter estimation; Sec. 4.3 uses these estimated parame-
ters to assess each model’s ability to predict the indoor temperature in test datasets that are different from
their training datasets.
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4 Results and discussion
4.1 Model fit
Before showing the results of the robustness tests, let us first ensure that the selected model structures may
capture the dynamics of the variable they aims at predicting (indoor air temperature).

(a) Deterministic model fit (b) Autocorrelation function of prediction residuals by
stochastic models

Figure 3: Proof of sufficient model complexity

As an example, Fig. 3(a) displays the indoor temperature measurements of a dataset, and prediction by
the three model structures, calibrated using this dataset for training, in a deterministic setting (the system
uncertainty is neglected). It is clear that the 1R1C model is unable to reproduce the dynamics of the indoor
air temperature, while the other two models have a sufficient number of degrees of freedom. The 3R3C is
especially indistinguishable from measurements.

Showing the fit of stochastic models is less informative since the Kalman updating step always ensures
that model predictions will fit measurements. Assessing whether a model may describe the dynamics of a
system is done by examining prediction residuals or their auto-correlation function (ACF). Fig. 3(b) shows
the ACF of residuals between observations and each of the predictions from the 3 models structures, in a
stochastic setting. A low ACF is a necessary condition for parameter estimates to be reliable [27]: the 2R2C
model has very few occurences of an ACF value above the 0.1 threshold, while the 3R3C model has none.

This analysis is not a careful model selection procedure: it merely shows that there is no need to add de-
grees of freedom to the models under investigation in this study. Examples of RC model selection procedures
include for instance [27].

4.2 Parameter estimation
4.2.1 Heat loss coefficient

The first relevant indicator, that can be compared across all model structures, is the global heat loss coefficient
(HLC) of the building. In each model structure, its PDF is obtained by reciprocating the sum of the PDFs
of all resistances. The HLC is therefore comparable across all model structures: its estimate is expected to
be consistent.

Fig. 4(a) compares the HLC estimated using deterministic models. Each box is the posterior PDF of the
HLC from one model structure, trained with one data set. The left part shows the PDFs obtained using a
1R1C model, trained by each of the 7 training data sets. The last box of this series shows the HLC estimated
by using all data sets altogether: this value is supposedly the most realistic of the series, since it uses seven
times more information than each of the other estimates. The center of Fig. 4(a) compares HLC estimates
from the deterministic 2R2C model, and the right part compares estimates from the 3R3C model.
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(a) HLC estimated with deterministic modelling

(b) HLC estimated with stochastic modelling

Figure 4: Estimation of the heat loss coefficient

Several observations can be drawn from Fig. 4(a) only, before comparing these results to the stochastic
alternative. The first observation is a high inconsistency of the HLC parameter estimated with the same
model but from different data. This is especially true in the case of the 1R1C structure: this model is overly
simplified, and its inadequacy is not included in its formulation. The median value of posterior PDFs may
span from 57 to 92 W/K. This means that using a single data set of a few days of observation offers no
guarantee of accurate results for parameter estimation. This problem is mitigated, although still observable,
in the case of the 2R2C and 3R3C models, which are able to mimic the behaviour of the building more
appropriately. There is still a dispersion in the HLC estimation results.

The second observation is the narrowness of confidence intervals. By using a supposedly unbiased model
for inference, the only admitted discrepancy between model output and observations is measurement noise.
This leads to an overconfident parameter estimation, especially with a higher model complexity. More
importantly, the confidence intervals of HLC do not overlap from one training data set to another. This
means that these confidence intervals cannot be trusted, since the point of confidence intervals is to include
all likely solutions. The issue is that they have been calculated by neglecting part of the uncertainty of the
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problem.
Fig. 4(b) shows the same display of results, if the model used for inference is stochastic and employs

a Kalman filter for the estimation of states. Each box is the posterior PDF of the HLC from one model
structure, trained with one data set. The main difference with the deterministic setting is that confidence
intervals are considerably larger. A likely explanation for this phenomenon lies in the principle of Bayesian
filtering: at each time step, states are updated as a compromise between predictions and observations. The
profile of one-step ahead predictions is more likely to match observations, resulting in a high likelihood for a
larger range of parameter values. Since the model is known to be wrong, the inference algorithm admits more
parameter values as likely to be true. As a result, confidence intervals are very conservative, especially for
such simplified models (it should be noted that Fig. 4(b) shows no clear influence of the model complexity).

This should not be seen as an unsatisfactory result. The estimated HLC is now more reliable, and more
importantly, its estimation is robust: indeed, there is an overlap between PDFs obtained from separate
datasets. This means that the “true” value of the HLC may be included in the results of all trainings.
Additionally, in each model structure, the PDF of the HLC estimated using all datasets overlaps each PDF
from individual datasets. This is not the case when a deterministic model is used.

4.2.2 Heat capacitance

The global heat capacitance of the building is now investigated. It is the sum of the estimated values
for all capacities of each model (they respectively have one, two or three). This variable is known to be
model-dependent: we should not expect it to hold the same value across different model structures.

Fig. 5(a) and 5(b) show all PDFs of the global capacitance, estimated by using deterministic or stochastic
models, respectively. The comparison allows the same discussion as the above investigation on the HLC:

• When neglecting system error in the model formulation (Fig. 5(a)), parameter estimation results are
not consistent across training datasets. Important uncertainties are overlooked, preventing a robust
model calibration. With a given model structure, the confidence intervals from separate trainings do
not overlap: a single training offers no guarantee of proposing the correct value of the thermal capacity.

• When accounting for system error (Fig. 5(b)), the estimation of the thermal capacity by each model
structure is more reproducible and reliable.

The latter observation is contradicted by two trainings of the stochastic 3R3C model, which resulted in
capacity PDFs that hardly overlap other trainings. A possible explanation is a low identifiability of series of
thermal capacities in RC models.

4.2.3 Measurement noise

The third indicator, used here to observe the relative robustess of deterministic and stochastic modelling in
parameter estimation problems, is the standard deviation of observation noise r. Recall that observation
noise appears in the measurement equation (Eq. 2), regardless of whether system noise is considered or not.
Its standard deviation r is an unknown parameter of our models.

The advertised inaccuracy of temperature sensors used in the experimental study is 0.15◦C: the estimates
of r should be lower than this value.

Fig. 6(a) shows the estimation of r by deterministic models. The deterministic 1R1C model estimates
its value between 1 K and 2 K, which is much higher than expected. This observation may be given the
following explanation: when system error is neglected, the only possible deviation between observations and
model predictions is the measurement noise. In reality, this deviation is caused by modelling errors, ignored
by our model: the inference algorithm attributes the entirety of the deviation to measurement errors and
increases the estimated value of r. Deterministic 2R2C and 3R3C models overestimate r as well, although
by a lower amount. Again, confidence intervals of this parameter do not overlap across separate trainings.

Fig. 6(b) shows the estimation of r by stochastic models. This estimation is more satisfactory in terms
of the absolute value of r, and in terms of robustness: all trainings overlap within a realistic range.
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(a) Thermal capacitance estimated with deterministic modelling

(b) Thermal capacitance estimated with stochastic modelling

Figure 5: Estimation of the total thermal capacitance

4.3 Forecasting
The decision of including system error in the formulation of a model considerably increases the confidence
intervals of parameters estimated by inverse methods. The precision of parameter estimation is not increased,
but its robustness is much higher. We now wish to observe if this decision has a similar impact on the
forecasting capability of models.

Once a model has been calibrated with a training dataset, its forecasting accuracy and robustness may be
assessed using another observation period as test set. Fig. 7 shows this test on two examples of training-test
combinations: a successful prediction (Fig. 7(a)) and a less successful one (Fig. 7(b)). The predictions
of indoor temperature by stochastic and deterministic 3R3C models, trained with a dataset, are compared
to measurements of another set. Since parameter estimates are posterior PDFs, each prediction simulation
is run n = 100 times by sampling the posterior: this results in confidence intervals on forecast profiles.
Predictions by the stochastic model include the additional uncertainty on the states: Eq. 24 and 25 are
used.
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(a) R deterministic

(b) R stochastic

Figure 6: Estimation of the measurement noise standard deviation

Fig. 7 shows that the stochastic model, where states are uncertain, predicts the indoor temperature with
a much higher uncertainty than the deterministic model. In the latter, the only source of uncertainty is the
variability of the parameter posterior. The former accounts for model inaccuracy in the forecast.

Next, a quantitative assessment of prediction accuracy and robustness is proposed, with a method inspired
from k-fold cross validation.

• Prediction accuracy is measured by the cross-validation (CV) index, which is computed by averaging
test errors [36]. Using a model trained with the learning dataset i, we denote MSEi the averaged test
error of this model over all test sets. The CV index is then the average of all MSEi values over all
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(a) Training set H2; test set D5 (b) Training set K1; test set H2

Figure 7: Examples of forecast by the 3R3C model, either deterministic or stochastic

D = 7 datasets.

MSEi = 1
D − 1

∑
j 6=i

[
1
N

N∑
t=1

(yt −C xt)
]

(train=i;test=j)

(31)

CV = 1
D

D∑
i=1

MSEi (32)

• Prediction robustness is measured by an index denoted PR. Let us denote PRi,j the percentage of
measurement points in the test dataset j, that fall inside the 95% confidence intervals of the predictions
calculated by a model trained with dataset i. The global prediction robustness of one model is the
averaged value of this indicator over all possible dataset combinations:

PR = 1
D

D∑
i=1

 1
D − 1

∑
j 6=i

PRi,j

 (33)

Prediction accuracy: CV index (K2)
Deterministic Stochastic

1R1C 6.54 5.00
2R2C 0.82 1.99
3R3C 0.86 1.10

Prediction robustness: PR index
Deterministic Stochastic

1R1C 6% 56%
2R2C 8% 63%
3R3C 8% 72%

Table 3: Assessment of prediction accuracy and robustness by each model structure; a lower CV score is
better, a higher PR score is better

Results show that including the system error in the model formulation does not increase the prediction
accuracy, but considerably increases its robustness: when forecasting with a stochastic model, the confidence
that the real process is within confidence bounds of the prediction can be higher.

There is no apparent incidence of the test conditions on the accuracy of predictions. The duration of
the training sets, duration of heating input, and weather conditions, do not seem to predetermine which
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training sequence will yield the most robust model. These sequences are indeed very similar: the causes
for prediction inaccuracy should be sought among phenomena that have not been observed, and not been
considered by the simplified models.

4.4 Summary
Here is a summary of the results of both the parameter estimation and the forecasting investigations:

• Using a stochastic model in an inverse problem significantly increases the uncertainty of estimated
parameters. The estimates are less confident, but more reliable as a consequence, since their confidence
intervals overlap when using several training datasets separately.

• The uncertainty bounds of a parameter identified through a stochastic model give an insight of its
identifiability. This allows pointing out which experimental training datasets are most informative, i.e.
bring the most information into the parameter estimates.

• Using a deterministic model supposes that the model is unbiased. This hypothesis is especially inap-
propriate in the case of simpler models such as 1R1C. As a consequence, there is a larger variability
of parameter estimates from separate training datasets. This problem is attenuated when the model
complexity is increased.

• Predictions by stochastic models are not more precise, but more cautious: their confidence bounds are
larger than from deterministic models. As a result, they are coherent with most of the validation data,
whereas deterministic models are not.

5 Conclusion
This paper investigates the effects of system error in the calibration of building thermal models. State-space
models are used to describe the behaviour of a test building. The process noise is included in the formulation
of some of these models (denoted stochastic models), and excluded in others (deterministic models). The
parameters of each model are then learned repeatedly by using several training datasets. The robustness
of parameter estimates between independent trainings is evaluated. Then, the forecasting ability of the
deterministic and stochastic options are compared, in terms of accuracy and robustness.

When neglecting system error, i.e. supposing that a building model is unbiased, the variability of param-
eter estimates between separate trainings is high. Their confidence intervals do not overlap, which means
that they are not reliable. Accounting for system error considerably widens these confidence intervals: a
stochastic model used in an inverse problem produces more robust parameter estimates. A similar obser-
vation can be done when comparing the forecasting capabilities of the deterministic and stochastic options:
although using a stochastic setting does not increase the accuracy of predictions, it considerably improves
their robustness.

The impact of different weather conditions on the variability of parameter estimates was not studied in
this paper: all tests were carried in similar weather conditions. Introducing more weather variability would
likely decrease the robustness of both deterministic and stochastic model calibrations. There are reasons to
believe that stochastic models would keep an advantage over deterministic ones in such a case, although this
point is worth investigating.
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[18] D. Maillet, Y. Jarny, D. Petit, Problèmes inverses en diffusion thermique - Outils spécifiques de con-
duction inverse et de régularisation, Techniques de l’ingénieur Transferts thermiques (2011) be8267.

17



[19] H. Madsen, Report of subtask 3b: Thermal performance characterisation using time series data - statis-
tical guidelines, in: IEA EBC Annex 58 - Reliable building energy performance characterisation based
on full scale dynamic measurements, 2016.

[20] R. Shumway, D. Stoffer, Time series analysis and its applications, Springer, 2016.

[21] M. C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 63 (3) (2001) 425–464.

[22] P. D. Arendt, D. W. Apley, W. Chen, Quantification of Model Uncertainty: Calibration, Model Dis-
crepancy, and Identifiability, Journal of Mechanical Design 134 (10) (2012) 100908–100908–12.

[23] H. Madsen, J. Holst, Estimation of continuous-time models for the heat dynamics of a building, Energy
and Buildings 22 (1) (1995) 67–79.

[24] K. K. Andersen, H. Madsen, L. H. Hansen, Modelling the heat dynamics of a building using stochastic
differential equations, Energy and Buildings 31 (1) (2000) 13–24.

[25] J. N. Nielsen, H. Madsen, P. C. Young, Parameter estimation in stochastic differential equations: An
overview, Annual Reviews in Control 24 (2000) 83–94.

[26] N. R. Kristensen, H. Madsen, S. B. Jorgensen, Parameter estimation in stochastic grey-box models,
Automatica 40 (2) (2004) 225–237.

[27] P. Bacher, H. Madsen, Identifying suitable models for the heat dynamics of buildings, Energy and
Buildings 43 (7) (2011) 1511–1522.
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